NEW SERIES. SERIES: PHYSICS

Izvestiya of Saratov University.

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Cite this article as:

Bogatenko T. R., Bukh A. V., Anishchenko V. S., Strelkova G. I. Synchronization Effects in a Two-Layer Network of Nonlocally Coupled Chaotic Maps with Dissipative and Inertial Intercoupling. //Izvestiya of Saratov University. New series. Series: Physics. , 2020, vol. 20, iss. 1, pp. 42-54. DOI: https://doi.org/10.18500/1817-3020-2020-20-1-42-54

Published online: 
02.03.2020
Language: 
Russian
UDC: 
53.01

Synchronization Effects in a Two-Layer Network of Nonlocally Coupled Chaotic Maps with Dissipative and Inertial Intercoupling

Autors: 
Bogatenko Tatyana Romanovna, Saratov State University
Bukh Andrei Vladimirovich, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University
Strelkova Galina Ivanovna, Saratov State University
Abstract: 

Background and Objectives: As external and mutual synchronisation effects are conventional, the study of these phenomena in networks of nonlocally coupled chaotic maps is of much interest. In this paper we study the effects of synchronization in a two-layer network of nonlocally coupled discrete-time systems. Each layer represents a ring of nonlocally coupled logistic maps in the chaotic regime. Depending on the initial conditions and parameter values, they can demonstrate various spatiotemporal patterns, including amplitude and phase chimera structures. The network equations are being solved numerically for periodic boundary conditions and randomly distributed initial conditions. We consider interaction between identical and nonidentical ensembles for dissipative and inertial intercoupling. Materials and Methods: The analysis is carried out with the use of a set of programs in C++ which was developed for modelling dynamic systems with complex intercoupling definition. Synchronization effect is estimated by calculating root-mean-square deviations between the symmetric elements of the rings. The first characteristic to consider is the time deviation which is used to determine the clusters that respond to the impact and synchronize faster as the intercoupling strength grows. The second quantity is the time and ensemble deviation and it is used for quantifying the synchronization effect and estimating the synchronization region in dependence of the interlayer coupling. Results: The numerical research has shown that the effects of external and mutual synchronisation are clearly visible in the case of dissipative intercoupling. The best results were obtained for identical ensembles, however, nonidentical ensembles can be synchronized as well with a given accuracy. In the case of external synchronisation of nonidentical ensembles for dissipative intercoupling we have ascertained that amplitude chimera structures synchronize faster than the phase ones. Both systems are much harder or impossible to synchronize for the case of inertial intercoupling. Conclusion: The numerical results obtained in this paper allow to understand the course of synchronization effects of chimera states appearing in a two-layer network of nonlocally coupled chaotic oscillators for dissipative and inertial intercoupling.

DOI: 
10.18500/1817-3020-2020-20-1-42-54
References: 
  1. Ch. Huygens (Hugenii). Horologium Oscillatorium. Parisiis, France, 1673. (Eng. ed.: The Pendulum Clock. Ames, Iowa State Univ. Press, 1986. 182 p.). 
  2. Andronov A. A. Sobranie trudov [Collection Works]. Moscow, Leningrad, Izdatel’stvo AN USSR, 1956. 538 p. (in Russian). 
  3. Teodorchik K. F. Avtokolebatelnye sistemy [Self-oscillating Systems]. Moscow, Gostechizdat Publ., 1952. 272 p. (in Russian).
  4. Hayashi C. Nonlinear Oscillations in Physical Systems. Princeton University Press, 1986. 432 p.
  5. Blekhman I. I. Sinkhronizacija dinamicheskikh sistem [Synchronization of Dynamic Systems]. Moscow, Nauka Publ., 1971. 896 p. (in Russian).
  6. Romanovskii Yu. M., Stepanova N. V., Chernavskij D. S. Matematicheskie modeli v biofi zike [Mathematical Models in Biophysics]. Moscow, Nauka Publ., 2003. 344 p. (in Russian).
  7. Dem’janchenko A. G. Sinkhronizacija generatorov garmonicheskikh kolebanij [The Synchronization of Harmonic Oscillation Generators]. Moscow, Energija Publ., 1976. 240 p. (in Russian).
  8. Winfree A. T. The Geometry of Biological Time. New York, Springer, 1980. 779 p.
  9. Landa P. S. Avtokolebanija v sistemakh s konechnym chislom stepenej svobody [Self-Oscillatory Systems with a Finite Number of Degrees of Freedom]. Moscow, Nauka Publ., 1980. 359 p. (in Russian).
  10. Blekhman I. I. Sinkhronizacija v prirode i tekhnike [Synchronization in Nature and Technology]. Moscow, Nauka Publ., 1981. 351 p. (in Russian).
  11. Kuramoto Y. Chemical Oscillations Waves and Turbulence. Berlin, Springer, 1984. 176 p.
  12. Landa P. S. Nelineinye kolebaniya i volny [Nonlinear Oscillations and Waves]. Moscow, Nauka Publ., 1997. 496 p. (in Russian).
  13. Pikovsky A., Rosenblum M., Kurths J. Sinkhronizacija. Fundamental’noe nelinejnoe javlenie [Synchronization. A Fundamental Nonlinear Phenomenon]. Moscow, Technosfera Publ., 2003. 496 p. (in Russian).
  14. Anishchenko V. S., Astakhov V. V., Vadivasova T. E., Strelkova G. I. Sinkhronizacija reguljarnykh, khaoticheskikh i stokhasticheskikh kolebanij [Synchronization of regular, chaotic and stochastic oscillations]. Moscow, Izhevsk, Nauchno-izdatel’skiy tsentr “Reguljarnaya i khaoticheskaya dinamika”, 2008. 144 p. (in Russian).
  15. Anishchenko V. S., Postnov D. E. Effect of basic frequency locking of chaotic self-oscillations. Synchronization of strange attractors. Pis’ma v ZhTF [Letters to ZhTF], 1988, vol. 14, iss. 6, pp. 569–573.
  16. Tass P., Rosenblum M. G., Weule J., Kurths J., Pikovsky A., Volkmann J., Schnitzler A., Freund H. J. Detection of Phase Locking from Noisy Data: Application to Magnetoencephalography. Phys. Rev. Lett., 1998, vol. 81, pp. 3291.
  17. Rothkegel A., Lehnertz K. Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators. New J. Phys., 2014, vol. 16, pp. 055006.
  18. Andrzejak R. G., Rummel C., Mormann F., Schindler K. All together now: Analogies between chimera state collapses and epileptic seizures. Sci. Rep., 2016, vol. 6, pp. 23000.
  19. Kuramoto Y., Battogtokh D. Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators. Nonlinear Phenom. in Complex Syst., 2002, vol. 5, no. 4, pp. 380–385.
  20. Abrams D. M., Strogatz S. H. Chimera States for Coupled Oscillators. Phys. Rev. Lett., 2004, vol. 93, iss. 17, pp. 174102.
  21. Andrzejak R. G., Ruzzene G., Malvestio I. Generalized Synchronization between Chimera States. Chaos, 2017, vol. 27, no. 5, pp. 053114.
  22. Bukh A. V., Strelkova G. I., Anishchenko V. S. Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators. Russian Journal of Nonlinear Dynamics, 2018, vol. 14, no. 4, pp. 419–433.
  23. Strelkova G. I., Vadivasova T. E., Anishchenko V. S. Synchronization of Chimera States in a Network of Many Unidirectionally Coupled Layers of Discrete Maps. Reg. and Chaot. Dyn., 2018, vol. 23, nos. 7–8, pp. 948–960.
  24. Leyva I., Sendiсa-Nadal I., Sevilla-Escoboza R., Vera-Avila V. P., Chholak P., Boccaletti S. Relay synchronization in multiplex networks. Sci. Rep., 2018, vol. 8, pp. 8629.
  25. Boccaletti S., Almendral J. A., Guana S., Leyva I., Liu Z., Sendiña-Nadal I., Wang Z., Zou Y. Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization. Phys. Rep., 2016, vol. 660, pp. 1–94.
  26. Feigenbaum M. J. Quantitative universality for a class of nonlinear transformations. J. of Stat. Physics, 1978, vol. 19, iss. 1, pp. 25–52.
  27. Feigenbaum M. J. Universal behavior in nonlinear systems. Physica D, 1983, vol. 7, pp. 16–39.
  28. May R. M. Simple mathematical models with very complicated dynamics. Nature, 1976, vol. 26, pp. 457.
  29. Kuznetsov A. P., Kuznetsov S. P., Ryskin N. M. Nelinejnye kolebanija. 2-e izd. [Nonlinear oscillations. 2nd ed.]. Moscow, Fizmatlit Publ., 2006. 309 p. (in Russian).
  30. Bukh A. V., Anishchenko V. S. Programma dlja modelirovanija setej dinamicheskikh elementov so slozhnymi svjazjami [Program for modelling networks of dynamic elements with complex connections]. Certifi cate on state registration of a computer program no. 2018618877 dated 23.07.2018 г. (in Russian).
  31. Bogomolov S. A., Slepnev A. V., Strelkova G. I., Schöll E., Anishchenko V. S. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems. Commun. Nonlinear Sci. Numer. Simulat., 2017, vol. 43, pp. 25–36.
  32. Omelchenko I., Maistrenko Y., Hövel Ph., Schöll E. Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States. Phys. Rev. Lett., 2011, vol. 106, pp. 234102.
  33. Bogomolov S. A., Strelkova G. I., Schöll E., Anishchenko V. S. Amplitude and phase chimeras in an ensemble of chaotic oscillators. Technical Physics Letters, 2016, vol. 42, iss. 7, pp. 765–768. DOI: https://doi.org/10.1134/S1063785016070191
Full text:
(downloads: 36)