Izvestiya of Saratov University.
ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

Физика конденсированного состояния вещества

Dynamical susceptibility of interacting superparamagnetic particles in a static magnetic field

Background and Objectives: Embedding a large number of magnetic nanoparticles into liquid or polymer matrix makes it possible to control the properties of a composite material using an external magnetic field. Such materials, so-calledmagnetic soft matter, include ferrofluids, magnetic elastomers, ferrogels, and various biocompatible magnetic filling.

Plasmon-polaritons Along the Asymmetric Hyperbolic Metamaterial

Background and Objectives: Plasmon-polaritons along a surface of bulk hyperbolic metamaterial and along a slab of such metamaterial with an arbitrary orientation of the crystallographic axis are considered (the axis in the polarization plane is an arbitrary angle with the direction of propagation). We use the rigorous approach based on Maxwell’s equations. The parameters of the hyperbolic metamaterial in the form of the effective dielectric constant tensor are determined by homogenization.

Influence of Sm Impurity Atoms on the Switching Effect in Thin Films of GeS

Background and Objectives: Nowadays interest has grown considerably to AivBvi type semiconductor media. Among them there is a special interest to the thin photosensitive films of germanium mono-sulfide. So, GeS thin layers have the ability to contain a large number of lithium ions. Therefore, it is possible to prepare the items: solar cells and super condenser. There are no limitations for practical applications of GeS crystal. Prospects of such semiconductor films are determined by the possibility of holographic recording and effects of switching and memory.

Phase Changes of Multiferroic Magnetic Materials, Used in External Memory Systems

Background and Objectives: A review of studies on technological bases of multiferroic materials for their possible use in devices for the urgent destruction of information is presented. The analysis of characteristics of materials allows one to specify their phase changes caused by external influences and to investigate the magnetic properties.

Electric and Magnetic-Field-Induced Formation of Macrostructures in Ferroelectric Liquid Crystals

Background and Objectives: The study of ferroelectric liquid crystals in smectic C* phase fits together several most relevant research areas, including electro-optic devices with response time in the range of 10 μs. A distinguishing feature of smectic C* liquid crystals is its chiral layered structure, which is formed due to the center of masses orientational ordering along the preferred orientation [called the director].

На сайте журнала 30.03.2023 запланированы технические работы. В это время сайт может быть недоступен. С уважением, администрация сайта.