For citation:
Ambarov A. V. Dynamical susceptibility of interacting superparamagnetic particles in a static magnetic field. Izvestiya of Saratov University. Physics , 2022, vol. 22, iss. 2, pp. 131-140. DOI: 10.18500/1817-3020-2022-22-2-131-140, EDN: USVZLL
Dynamical susceptibility of interacting superparamagnetic particles in a static magnetic field
Background and Objectives: Embedding a large number of magnetic nanoparticles into liquid or polymer matrix makes it possible to control the properties of a composite material using an external magnetic field. Such materials, so-calledmagnetic soft matter, include ferrofluids, magnetic elastomers, ferrogels, and various biocompatible magnetic filling. These complex systems attract a considerable amount of interest from researchers, medics and engineers because they are actively used in progressive high industrial and biomedical technologies. The dynamical response of an ensemble of interacting superparamagnetic particles in static and linearly polarized alternating magnetic fields is theoretically investigated. Materials and Methods: The rotational motion of the magnetic moment of a random ferroparticle is determined from the solution of the Fokker – Planck – Brown equation, which introduces an additional term that allows us to take into account the interparticle dipole-dipole interactions at the level of the modified first-order mean field theory. Results: The obtained analytical solutions for the probability density of the orientation of the magnetic moment of a random particle are used to determine the dynamical susceptibility. The spectrum of dynamical susceptibility is studied as a function of the static field strength, the magneto-crystallographic anisotropy parameter, the Langevin susceptibility of the ferroparticle ensemble, and the mutual orientation of the alternating and static magnetic fields. Conclusion: The obtained results represent essential information in the design and synthesis of new functional materials.
- Benassi A. Dynamics of mobile interacting ferromagnetic films : Theory and numerical implementation. Modelling and Simulation in Materials Science and Engineering, 2014, vol. 22, iss. 2, article no. 025004. https://doi.org/10.1088/0965-0393%2F22%2F2%2F025004
- Novikau I., Sanchez P., Kantorovich S. The influence of an applied magnetic field on the self-assembly of magnetic nanogels. Journal of Molecular Liquids, 2020, vol. 307, article no. 112902. https://doi.org/10.1016/j.molliq.2020.112902
- Becker T., Bohm V. Chavez Vega J., Odenbach S., Raikher Y., Zimmermann K. Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems. Archive of Applied Mechanics, 2019, vol. 89, pp. 133–152. https://doi.org/10.1007/S00419-018-1477-4
- Lopez-Lopez M. T., Rodriguez I. A., Rodriguez-Arco L., Carriel V., Bonhome-Espinosa A. B., Campos F., Zubarev A., Duran J. D. G. Synthesis, characterization and in vivo evaluation of biocompatible ferrogels. Journal of Magnetism and Magnetic Materials, 2017, vol. 431, pp. 110–114. https://doi.org/10.1016/j.jmmm.2016.08.053
- Sanchez L. M., Alvarez V. A., Gonzalez J. S. Ferrogels : Smart materials for biomedical and remediation applications. In: V. K. Trakur, M. K. Trakur, M. R. Kessler, eds. Handbook of Composites from Renewable Materials. John Wiley & Sons, 2017, vol. 8, chapter 21, pp. 561–579. https://doi.org/10.1002/9781119441632.ch168
- Borin D., Stepanov G., Mikhailov V., Gorbunov A. The damping device based on magnetoactive elastomer. Magnetohydrodynamics, 2007, vol. 43, iss. 4, pp. 437– 443. https://doi.org/10.22364/mhd
- Becker T. I., Raikher Y. L., Stolbov O. V., Bohm V., Zimmermann K. Dynamic properties of magneto-sensitive elastomer cantilevers as adaptive sensor elements. Smart Materials and Structures, 2017, vol. 26, iss. 9, article no. 095035. https://doi.org/10.1088/1361-665X/aa75ec
- Martinet A. Biréfringence et dichroïsme linéaire des ferrofluides sous champ magnétique. Rheologica Acta, 1974, vol. 13, pp. 260–264. https://doi.org/10.1007/BF01520886
- Bentivegna F., Ferré J., Nývlt M., Jamet J. P., Imhoff D., Canva M., Brun A., Veillet P., Višňovský Š., Chaput F., Boilot J. Magnetically textured nanoparticles in a silica gel matrix : Structural and magnetic properties. Journal of Applied Physics, 1998, vol. 83, pp. 7776–7788. https://doi.org/10.1063/1.367952
- Becker T., Bohm V., Chavez J. Vega, Odenbach S., Raikher Y., Zimmermann K. Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems. Archive of Applied Mechanics, 2019, vol. 89, p. 133–152. https://doi.org/10.1007/s00419-018-1477-4
- Raikher Y. L., Shliomis M. I. The effective field method in the orientational kinetics of magnetic fluids. Adv. Chem. Phys., 1994, vol. 87, pp. 595–751. https://doi.org/10.1002/9780470141465.ch8
- Raikher Y. L., Stepanov V. I. Theory of magneto-inductive hyperthermia under a rotating field. AIP Conf. Proc., 2010, vol. 1311, pp. 298–304. https://doi.org/10.1063/1.3530030
- Lebedev A. V., Stepanov V. I., Kuznetsov A. A., Ivanov A. O., Pshenichnikov A. F. Dynamic susceptibility of a concentrated ferrofluid : The role of interparticle interactions. Physical Review E, 2019, vol. 100, iss. 3, article no. 032605. https://doi.org/10.1103/PhysRevE.100.032605
- Ivanov A. O., Zverev V. S.,Kantorovich S. S. Revealing the signature of dipolar interactions in dynamic spectra of polydisperse magnetic nanoparticles. Soft Matter., 2016, vol. 12, iss. 15, pp. 3507–3513. https://doi.org/10.1039/C5SM02679B
- Sindt J. O., Camp P. J., Kantorovich S. S., Elfimova E. A., Ivanov A. O. Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids. Physical Review E, 2016, vol. 93, iss. 6, article no. 063117. https://doi.org/10.1103/PhysRevE.93.063117
- Zubarev A. Y., Iskakova L. Y., Abu-Bakr A. F. Magnetic hyperthermia in solid magnetic colloids. Physica A : Statistical Mechanics and its Applications, 2017, vol. 467, pp. 59–66. https://doi.org/10.1016/j.physa.2016.10.045
- Zubarev A. Magnetic hyperthermia in a system of ferromagnetic particles, frozen in a carrier medium : Effect of interparticle interactions. Physical Review E, 2018, vol. 98, iss. 3, article no. 032610. https://doi.org/10.1103/PhysRevE.98.032610
- Batrudinov T. M., Nekhoroshkova Y. E., Paramonov E. I., Zverev A. O., Elfimova E. A., Ivanov A. O., Camp P. J. Dynamic magnetic response of a ferrofluid in a static uniform magnetic field. Physical Review E, 2018, vol. 98, iss. 5, article no. 052602. https://doi.org/10.1103/PhysRevE.98.052602
- Ivanov A. O., Camp P. J. Theory of the dynamic magnetic susceptibility of ferrofluids. Physical Review E, 2018, vol. 98, iss. 5, article no. 050602. https://doi.org/10.1103/PhysRevE.98.050602
- Ambarov A. V., Zverev V. S., Elfimova E. A. Dynamic response of interacting superparamagnetic particles with aligned easy magnetization axes. Journal of Magnetism and Magnetic Materials, 2020, vol. 497, article no. 166010. https://doi.org/10.1016/j.jmmm.2019.166010
- Brown W. F. Thermal fluctuations of a single-domain particle. Physical Review, 1963, vol. 130, iss. 5, pp. 1677–1686. https://doi.org/10.1103/PhysRev.130.1677
- Ivanov A. O., Kantorovich S. S., Zverev V. S., Elfimova E. A., Lebedev A. V., Pshenichnikov A. F. Temperature-dependent dynamic correlations in suspensions of magnetic nanoparticles in a broad range of concentrations : a combined experimental and theoretical study. Phys. Chem. Chem. Phys., 2016, vol. 18, iss. 27, pp. 18342–18352. https://doi.org/10.1039/C6CP02793H
- Solovyova A. Yu., Elfimova E. A., Ivanov A. O. Magnetic properties of textured ferrocomposite consisting of immobilized superparamagnetic nanoparticles. Physical Review E, 2021, vol. 104, iss. 6, article no. 064616. https://doi.org/10.1103/PhysRevE.104.064616
- 1164 reads