For citation:
Vysotskii S. L., Seleznev M. E., Amakhanov G. M., Nikulin Y. V. Influence of crystallographic anisotropy of unsaturated yttrium iron garnet film on spin injection in platinum film by the mechanism of inverse spin Hall effect. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 1, pp. 44-52. DOI: 10.18500/1817-3020-2025-25-1-44-52, EDN: IJAXHF
Influence of crystallographic anisotropy of unsaturated yttrium iron garnet film on spin injection in platinum film by the mechanism of inverse spin Hall effect
Background and Objectives: Thin-film structures of yttrium iron garnet ferrite film – platinum are actively studied due to the possibility of using the direct (for converting electric current in platinum into spin waves in ferrite) and inverse (injection of spin current from ferrite into platinum film) spin Hall effects for application in magnonics and spintronics devices. Materials and Methods: The structures studied in this work were obtained on the basis of yttrium iron garnet films of crystallographic orientations (100) and (111), from which waveguides were cut out, in which spin waves were excited. Their propagation was monitored using a vector network analyzer. A platinum film in the form of stripe oriented along the long axis of the waveguide was fabricated on the surface of the waveguides using magnetron sputtering, photolithography, and ion etching. Spin injection from ferrite film in the platinum film results in electric charge current generation. An experimentally measured value was the electromotive force between contacts to the platinum stripe. It was measured using a synchronous detector. The measurements were carried out at magnetization field values lower than the saturation field of the ferrite film, with the magnetic structure of the film being divided into domains. Results and Conclusions: It has been shown that for both crystallographic orientations the maximum spin injection is achieved when magnetizing the waveguides along the easy magnetization axis and symmetrical domain structure is formed.
- Dyakonov M. I., Perel V. I. Current induced spin orientation of electrons in semiconductors. Phys. Lett. A, 1971, vol. 35, no. 5, pp. 459–460. https://doi.org/10.1016/0375-9601(71)90196-4
- Sandweg C. W., Kajiwara Y., Ando K., Saitoh E., Hillebrands B. Enhancement of the spin pumping efficiency by spin wave mode selection. Appl. Phys. Lett., 2010, vol. 97, no. 25, art. 252504. https://doi.org/10.1063/1.3528207
- Yang F., Hammel P. C. FMR-driven spin pumping in Y3Fe5O12-based structures. Journal of Physics D: Applied Physics, 2018, vol. 51, no. 25, art. 253001. https://doi.org/10.1088/1361-6463/aac249
- Hirohata A., Yamada K., Nakatani Y., Ioan-Lucian P., Dieny B., Pirro P., Hillebrands B. Review on spintronics: Principles and device applications. JMMM, 2020, vol. 509, no. 12, art. 166711. https://doi.org/10.1016/j.jmmm.2020.166711
- Manuilov S. A., Du C., Adur R., Wang H. L., Bhallamudi V., Yang F., Hammel P. C. Spin pumping from spin waves in thin film YIG. Appl. Phys. Lett., 2015, vol. 107, no. 4, art. 042405. https://doi.org/10.1063/1.4927451
- Chumak A. V., Serga A. A., Jungfleisch M. B., Neb R., Bozhko D. A., Tiberkevich V. S., Hillebrands B. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett., 2012, vol. 100, no. 8, art. 082405. https://doi.org/10.1063/1.3689787
- Jungfleisch M. B., Chumak A. V., Kehlberger A., Lauer V., Kim D. H., Onbasli M. C., Ross C. A., Klaui M., Hillebrands B. Thickness and power dependence of the spin-pumping eject in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B, 2015, vol. 91, no. 13, art. 134407. https://doi.org/10.1103/PhysRevB.91.134407
- Kohno R., Thiéry N. M., An K., Noël P., Vila L., Naletov V. V., Beaulieu N., Youssef J. D., Loubens G., Klein O. Enhancement of YIG|Pt spin conductance by local Joule annealing. Appl. Phys. Lett., 2021, vol. 118, no. 3, art. 032404. https://doi.org/10.1063/5.0028664
- Wang J., Wang H., Chen J., Legrand W., Chen P., Sheng L., Xia J., Lan G., Zhang Y., Yuan R., Dong J., Han X., Ansermet J. P., Yu H. Broad-wave-vector spin pumping of flat-band magnons. Phys. Rev. Appl., 2024, vol. 21, art. 044024. https://doi.org/10.1103/PhysRevApplied.21.044024
- Serha R. O., Bozhko D. A., Agrawal M., Verba R. V., Kostylev M., Vasyuchka V. I., Hillebrands B., Serga A. A. Low-Damping Spin-Wave Transmission in YIG/Pt-Interfaced Structures. Adv. Mater. Interfaces, 2022, vol. 9, iss. 36, art. 2201323. https://doi.org/10.1002/admi.202201323
- Zhao Y., Yao Y., Chai Y., Zhou Z., Li Y., Guo Y., Lu Q., Liu H., Yang G., Dong G., Peng B., Hu Z., Liu M. Greatly Improved the Tunable Amplitude of Ferromagnetism Based on Interface Effect of Flexible Pt/YIG Heterojunctions. ACS Appl Mater Interfaces, 2024, vol. 16, iss. 8, pp. 10953–10959. https://doi.org/10.1021/acsami.3c17220
- Lobanov N., Matveev O., Morozova M. Bragg Resonances in a Yttrium Iron Garnet–Platinum–Yttrium Iron Garnet Layered Structure. Bull. Russ. Acad. Sci. Phys., 2024, vol. 88, iss. 2, P. 254–259. https://doi.org/10.1134/S1062873823705330
- Yang M., Sun L., Zeng Y., Cheng J., He K., Yang X., Wang Z., Yu L., Niu H., Ji T., Chen G., Miao B., Wang X., Ding H. Highly efficient field-free switching of perpendicular yttrium iron garnet with collinear spin current. Nat. Commun., 2024, vol. 15, art. 3201. https://doi.org/10.1038/s41467-024-47577-x
- Seleznev M. E., Nikulin Y. V., Khivintsev Y. V., Vysotskii S. L., Kozhevnikov A. V., Sakharov V. K., Dudko G. M., Pavlov E. S., Filimonov Y. A. Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG-Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, no. 2, pp. 225–248. https://doi.org/10.18500/0869-6632-003032
- Vysotskii S. L., Seleznev M. E., Nikulin Yu. V., Kozhevnikov A. V., Amakhanov G. M., Temirazyev A. G. Detection of spin-wave excitations of domain structure in yttrium-iron film using inverse spin Hall effect. Fizika Tverdogo Tela, 2024, vol. 66. no. 7, pp. 1057–1061 (in Russian). https://doi.org/10.61011/FTT.2024.07.58373.34HH
- Vizulin S. A., Kirov S. A., Siryiev N. E. Domains wall displacement waves in ferrite plate. Radiotechnika i Electronika, 1985, vol. 30, no. 1, pp. 179–181 (in Russian).
- Stancil D. D. A magnetostatic wave model for domain wall collective excitation. J. Appl. Phys., 1984, vol. 56, no. 6, pp. 1775–1779. https://doi.org/10.1063/1.334184
- Ramesh M., Jedryka E., Wigen P. E., Shone M. Coupled oscillations of domain – domain wall system in garnet films. J. Appl. Phys., 1985, vol. 57, no. 1, pp. 3701–3703. https://doi.org/10.1063/1.334995
- Kirov S. A., Pilshikov S. A., Siryev N. E. Magnetostatic types of oscillations in sample with domain structure. Physika Tverdogo Tela, 1974, vol. 16, no. 1, pp. 3051–3056 (in Russian).
- Gurevich A. G., Melkov G. A. Magnetization oscillations and waves. London, CRC Press, 1996. 464 p. https://doi.org/10.1201/9780138748487
- Beregov A. S., Kudinov E. V. Magnetostatic waves in arbitrary oriented film of cubic ferromagnetic with induced anisotropy. Part II. Dispersion characteristics of magnetostatic waves. Electronic Technique. Ser. Microwave Electronics, 1987, no. 6 (400), pp. 8–12 (in Russian).
- Seleznev M. E., Nikulin Yu. V., Sakharov V. K., Amakhanov G. M. Spin pumping by MSSW propagating along “easy” and “hard” magnetization axises inmicrostructures YIG/Pt. XXV International Conference “New in Magnetism and Magnetic Materials”: Collection of reports: in 2 vols. Moscow, July 1–6, 2024. Moscow, RTU MIREA Publ., 2024, vol. 1, pp. 454–459.
- Vysotskii S. L., Kazakov G. T., Filimonov Yu. A., Shein I. V., He A. S. Magnetostatic waves in obliquely magnetized structure consist of two ferrite layers of (111) orientation. Radiotekhnika i Elektronika, 1990, vol. 35, no. 5, pp. 959–965 (in Russian).
- 44 reads