ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Моделирование эпидемий решетками клеточных автоматов. SIRS модель с учетом воспроизводства и миграции

В работе рассмотрена модифицированная SIRS модель распространения эпидемий в виде решетки стохастических клеточных автоматов. В модели используется динамическое регулирование численности населения с ограничением максимального числа особей популяции и влиянием заболевания на процессы воспроизводства. Показано, что при определенных значениях параметров в системе существуют самоподдерживающиеся колебания числа инфицированных. Данный режим характеризуется нерегулярными шумоподобными колебаниями числа заболевших с выраженной периодической составляющей.

Взаимная синхронизация диссипативно связанных мемристивных генераторов

В работе исследуются особенности полной и фазо-частотной синхронизации в системе двух диссипативно связанных мемристивных генераторов периодических колебаний. Демонстрируются особенности синхронизации, связанные с мемристивным характером взаимодействующих систем. Они заключаются в непрерывной зависимости границ синхронизации (как полной, так и частотной) от начальных условий, в частности, от начального состояния мемристивных элементов двух генераторов.

Synchronization Effects in a Two-Layer Network of Nonlocally Coupled Chaotic Maps with Dissipative and Inertial Intercoupling

Background and Objectives: As external and mutual synchronisation effects are conventional, the study of these phenomena in networks of nonlocally coupled chaotic maps is of much interest. In this paper we study the effects of synchronization in a two-layer network of nonlocally coupled discrete-time systems. Each layer represents a ring of nonlocally coupled logistic maps in the chaotic regime.

Statistics of Poincare Recurrence with Considering Effect of Fluctuations

The basic statistical characteristics of Poincare recurrence are obtained numerically for the logistic map in a chaotic regime. The mean values, variation and recurrence distribution density are calculated and their dependence on a return size is analysed. Afraimovich–Pesin dimension values are obtained. It is verified that the Afraimovich–Pesin dimension corresponds to the Lyapunov exponent. the peculiarities of the influence of noise on the recurrence statistics are studied in local and global approaches.

Synchronous Dynamics of Nephrons Ensembles

In this work, the phenomenon of synchronization of oscillations in the dynamics of nephronic ensembles is studied. It is shown that a large number of structural units on the kidney's surface participate in the formation of synchronous clusters. It is stated that the cluster's size changes in time and the frequency locking for rhythmic processes in the cooperative dynamics of nephrons occurs only during some parts of experimental recordings. 

Complex Waveforms and Synchronization in Functional Model of Vascular Nephron Tree

We suggest functional model that qualitatively describes oscillatory processes in renal autoregulation. Our model consists of ensemble of two-mode oscillators that are coupled by means of two different pathways. The above coupling pathways count both the geometry of ensemble (tree-like structure or local interaction) and the specific action of individual oscillator (energy distribution netrwork or diffusive coupling). We study the typical operating regimes of suggested model as well as transitions between them.

Synchronization of Chimera States in Ensembles of Nonlocally Coupled Cubic Maps

Background and Objectives: Effects of mutual and external synchronization of chimera states are studied in two coupled ensembles of discrete maps. Each of the ensembles is a onedimensional ring of nonlocally coupled cubic maps in the chaotic oscillation mode. In order to create differences in the dynamics of the ensembles when there is no coupling between them, a mismatch is introduced in the parameters of the individual oscillators of the first and second rings. Effects of external and mutual synchronization of chimera states are explored in detail.

On the Theory of Synchronization of a Two-Mode Electron Maser with a Hard Excitation

Background and Objectives: Medium-power (10–100 W) THz continuous-wave electron cyclotron masers (gyrotrons) are of great interest for many applications, such as spectroscopy with dynamic nuclear polarization, plasma diagnostics, non-destructive testing, remote detection of radioactive materials, biomedical applications, etc. For these applications, a high frequency stability is required, with the possibility of frequency tuning within 1–2 GHz.

Influence of Time-delay in the Coupling Channel on the Complete Synchronization of Chaos

In the current work the influence of delay in a coupling channel on the synchronization of regular and chotic oscillations in discrete maps and continuous time systems is studied. It is established that introduction of time delay in a discrete system prevents synchronization of chaos but allows synchronization of periodic and quasiperiodic oscillations. In a continuous time system with chaotic attractor the introduction of a small delay doesn’t make essential changes in its dynamics however the increasing of delay leads to the reverse period doubling cascade.

Spiral Wave Patterns in Two-Layer 2D Lattices of Nonlocally Coupled Discrete Oscillators. Synchronization of Spiral Wave Chimeras

The paper describes the spatio-temporal dynamics of a lattice that is given by a 2D N × N network of nonlocally coupled Nekorkin maps which model neuronal activity. The network behavior is studied for periodic and no-flux boundary conditions. It is shown that for certain values of the coupling parameters, rotating spiral waves and spiral wave chimeras can be observed in the considered lattice. We analyze and compare statistical and dynamical characteristics of the local oscillators from coherence and incoherence clusters of a spiral wave chimera.