Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I. Synchronization in phase oscillator networks with “ring” and “small world” link topologies and different dependences of the oscillator frequency on its network location. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 3, pp. 198-208. DOI: 10.18500/1817-3020-2023-23-3-198-208, EDN: UMBUSL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 135)
Article type: 

Synchronization in phase oscillator networks with “ring” and “small world” link topologies and different dependences of the oscillator frequency on its network location

Koronovskii Alexey Aleksandrovich, Saratov State University
Kurovskaya Maria K., Saratov State University
Moskalenko Olga Igorevna, Saratov State University

Background and Objectives: In this paper, we consider the general case of the establishment/destruction of a completely synchronous state of phase oscillator networks with topologies of links such as “ring” and “small world”. The natural frequencies of the node oscillators are supposed to be distributed along the network according to an arbitrary law. Materials and Methods: The network of Kuramoto oscillators, consisting of 1000 node elements, was considered as the system under study theoretically and numerically. Results: The influence of quantitative characteristics of the dependence of natural frequencies on the number (spatial coordinate) of the oscillator on the onset of a completely synchronous state of the network of phase oscillators as well as the mechanism of the transition to a completely synchronous regime has been studied. An analytical expression forthe critical value ofthe coupling parameter correspondingtothe establishment of a fully synchronous regime within the network under consideration has been deduced. The theoretical results obtained have been compared with the results of the direct numerical simulation of the oscillator network behavior, with the excellent agreement being observed. Conclusion: It has been found that the dependence of the natural frequencies of oscillators on the spatial coordinate (or, on the number of the oscillator in the network) in the case of networks with the topology of links such as “ring” and “small world” determines completely the properties of such networks from the point of view of establishing the phase synchronization. Having based on the “ring” and “small world” network properties, it is possible to solve not only the problem of finding the critical value of the coupling parameter for the known frequency dependences on the coordinate, but also the problem of synthesizing such networks with the predetermined properties.

This work was supported by the Russian Science Foundation (project No. 19-12-00037).
  1. Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D. Complex networks: Structure and dynamics. Phys. Rep., 2006, vol. 424, no. 4–5, pp. 175–308. https://doi.org/10.1016/j.physrep.2005.10.009
  2. Dey A., Tian Y., Gel Y. Community detection in complex networks: From statistical foundations to data science applications. Wiley Interdiscip. Rev. Comput. Stat., 2021, vol. 14, no. 2, pp. e1566. https://doi.org/10.1002/wics.1566
  3. Arenas A., Díaz-Guilera A., Kurths J., Moreno Y., Zhou C. Synchronization in complex networks. Phys. Rep., 2008, vol. 469, no. 3, pp. 93–153. https://doi.org/10.1016/j.physrep.2008.09.002
  4. Dörfler F., Bullo F. Synchronization in complex networks of phase oscillators: A survey. Automatica, 2014, vol. 50, no. 6, pp. 1539–1564. https://doi.org/10.1016/j.automatica.2014.04.012
  5. Vadivasova T. E., Anishchenko V. S. Relationship between frequency and phase characteristics of chaos: Two criteria of synchronization. Journal of Communications Technology and Electronics, 2004, vol. 49, no. 1, pp. 69–75 (in Russian).
  6. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A universal concept in nonlinear sciences. Cambridge, Cambridge University Press, 2003. 432 p.
  7. Arenas A., Díaz-Guilera A., Pérez-Vicente C. J. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett., 2006, vol. 96, no. 11, pp. 114102. https://doi.org/10.1103/PhysRevLett.96.114102
  8. Peron T., Messias F. De Resende B., Mata A. S., Rodrigues F. A., Moreno Y. Onset of synchronization of Kuramoto oscillators in scale-free networks. Phys. Rev. E, 2019, vol. 100, no. 4, pp. 042302. https://doi.org/10.1103/PhysRevE.100.042302
  9. Moreno Y., Pacheco A. F. Synchronization of Kuramoto oscillators in scale-free networks. Europhys. Lett., 2004, vol. 68, no. 4, pp. 603–609. https://doi.org/10.1209/epl/i2004-10238-x
  10. Boccaletti S., Almendral J. A., Guan S., Leyva I., Liu Z., Sendiña-Nadal I., Wang Z., Zou Y. Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization. Phys. Rep., 2016, vol. 660, pp. 1–94. https://doi.org/10.1016/j.physrep.2016.10.004
  11. Leyva I., Sevilla-Escoboza R., Buldú J. M., Sendiña-Nadal I., Gómez-Gardeñes J., Arenas A., Moreno Y., Gómez S., Jaimes-Reátegui R., Boccaletti S. Explosive First-Order Transition to Synchrony in Networked Chaotic Oscillators. Phys. Rev. Lett., 2012, vol. 108, no. 16, pp. 168702. https://doi.org/10.1103/PhysRevLett.108.168702
  12. Leyva I., Navas A., Sendiña-Nadal I., Almendral J. A., Buldú J. M., Zanin M., Papo D., Boccaletti S. Explosive transitions to synchronization in networks of phase oscillators. Sci. Rep., 2013, vol. 3, no. 1, pp. 1281. https://doi.org/10.1038/srep01281
  13. Pazó D. Thermodynamic limit of the first-order phase transition in the Kuramoto model. Phys. Rev. E, 2005. Vol. 72, no. 4. pp. 046211. https://doi.org/10.1103/PhysRevE.72.046211
  14. Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I., Hramov A. E., Boccaletti S. Self-similarity in explosive synchronization of complex networks. Phys. Rev. E, 2017, vol. 96, no. 6, pp. 062312. https://doi.org/10.1103/PhysRevE.96.062312
  15. Zou Y., Pereira T., Small M., Liu Z., Kurths J. Basin of Attraction Determines Hysteresis in Explosive Synchronization. Phys. Rev. Lett., 2014, vol. 112, no. 11, pp. 114102. https://doi.org/10.1103/PhysRevLett.112.114102
  16. Peron T. K. D., Rodrigues F. A. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations. Phys. Rev. E, 2012, vol. 86, no. 5, pp. 056108. https://doi.org/10.1103/PhysRevE.86.056108
  17. Danziger M. M., Moskalenko O. I., Kurkin S. A., Zhang X., Havlin S., Boccaletti S. Explosive synchronization coexists with classical synchronization in the Kuramoto model. Chaos Interdiscip. J. Nonlinear Sci., 2016, vol. 26, no. 6, pp. 065307. https://doi.org/10.1063/1.4953345
  18. Su G., Ruan Z., Guan S., Liu Z. Explosive synchronization on co-evolving networks. Europhys. Lett., 2013, vol. 103, no. 4, pp. 48004. https://doi.org/10.1209/0295-5075/103/48004
  19. Peron T. K. D., Rodrigues F. A. Explosive synchronization enhanced by time-delayed coupling. Phys. Rev. E, 2012, vol. 86, no. 1, pp. 016102. https://doi.org/10.1103/PhysRevE.86.016102
  20. Leyva I., Sendiña-Nadal I., Almendral J. A., Navas A., Olmi S., Boccaletti S. Explosive synchronization in weighted complex networks. Phys. Rev. E, 2013, vol. 88, no. 4, pp. 042808. https://doi.org/10.1103/PhysRevE.88.042808
  21. Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I. On the possibility of explosive synchronization in small world networks. Izvestiya VUZ. Applied Nonlinear Dynamics, 2021, vol. 29, no. 4, pp. 467–479 (in Russian). https://doi.org/10.18500/0869-6632-2021-29-4-467-479
  22. Watts D. J., Strogatz S. H. Collective dynamics of ‘small-world’ networks. Nature, 1998, vol. 393, no. 6684, pp. 440–442. https://doi.org/10.1038/30918
  23. Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I. On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the “ring” and “small world” types. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, no. 1, pp. 32–44 (in Russian). https://doi.org/10.18500/0869-6632-003027
  24. Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators. International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics. Berlin, Heidelberg, Springer, 1975, pp. 420–422. https://doi.org/10.1007/BFb0013365
  25. Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Berlin, Heidelberg, Springer, 1984, vol. 19. 176 p. https://doi.org/10.1007/978-3-642-69689-3
  26. Acebrón J. A., Bonilla L. L., Pérez Vicente C. J., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 2005, vol. 77, no. 1, pp. 137–185. https://doi.org/10.1103/RevModPhys.77.137