Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Adilova A. B., Preobrazhenskaya N. V., Ryskin N. M. On the Theory of Synchronization of a Two-Mode Electron Maser with a Hard Excitation. Izvestiya of Sarat. Univ. Physics. , 2019, vol. 19, iss. 1, pp. 19-27. DOI: 10.18500/1817-3020-2019-19-1-19-27

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 49)

On the Theory of Synchronization of a Two-Mode Electron Maser with a Hard Excitation

Adilova Asel Bulatovna, Saratov State University
Preobrazhenskaya Nataliya Vadimovna, Saratov State University
Ryskin Nikita Mikhailovich, Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Background and Objectives: Medium-power (10–100 W) THz continuous-wave electron cyclotron masers (gyrotrons) are of great interest for many applications, such as spectroscopy with dynamic nuclear polarization, plasma diagnostics, non-destructive testing, remote detection of radioactive materials, biomedical applications, etc. For these applications, a high frequency stability is required, with the possibility of frequency tuning within 1–2 GHz. In addition to the existing methods of frequency stabilization, the use of forced synchronization by an external stabilized driving source has recently attracted interest. In a typical situation, the maximal efficiency of a gyrotron is attained in the hard excitation mode. The aim of the work is to study the effect of mode competition on the operation of a gyrotron driven by an external signal in the case of hard excitation. Materials and Methods: The paper presents the results of theoretical analysis and numerical simulation of forced synchronization by locking with an external signal. Bifurcation analysis is performed on the basis of a simplified quasilinear model. Numerical simulation is carried out for a well-known model of the non-stationary theory of a gyrotron with a fixed high-frequency field profile. Results: The fixed points of the system are found and the partition of the parameter plane into regions with different types of stability is constructed. Phase portraits are presented that illustrate bifurcations occurring as the driving power increases. Based on the numerical simulation, the scenario of transition to the synchronous mode is studied. With an increase in the amplitude of the external signal, a saddle-node bifurcation occurs, as a result of which the basin of attraction captures the origin of coordinates. This leads to the fact that the synchronization mode becomes possible even with small initial perturbations. With a further increase in the driving amplitude, the spurious mode is completely suppressed, and the synchronization of the fundamental mode becomes the only stable state. Conclusion: Using the example of a simple quasilinea r model of a two-mode electron maser, the scenario of transition to a synchronous mode is studied. The results are confirmed by numerical simulation based on the theory of a gyrotron with a fixed high-frequency field profile.


1. Nusinovich G. S. Introduction to the Physics of Gyrotrons. Baltimore : Johns Hopkins University Press, 2004. 335 p.

2. Nusinovich G. S., Thumm M. K. A., Petelin M. I. The gyrotron at 50 : historical overview // J. Infr. Millim. Terahertz Waves. 2014. Vol. 35, № 4. P. 325–381.

3. Thumm M. Recent advances in the worldwide fusion gyrotron development // IEEE Trans. Plasma Sci. 2014. Vol. 42, № 3. P. 590–599.

4. Bykov Yu., Eremeev A., Glyavin M., Kholoptsev V., Luchinin A., Plotnikov I., Denisov G., Bogdashev A., Kalynova G., Semenov V., Zharova N. 24–84–GHz gyrotron systems for technological microwave applications // IEEE Trans. Plasma Sci. 2004. Vol. 32, № 1. P. 67–72.

5. Idehara T., Saito T., Ogawa I., Mitsudo S., Tatematsu Y., Sabchevski S.The potential of the gyrotrons for development of the sub-terahertz and the te rahertz frequency range. A review of novel and prospective applications // Thin Solid Films. 2008. № 517. P. 1503–1506.

6. Kumar N., Singh U., Bera A., Sinha A.K.A review on the sub-THz/THz gyrotrons // Infrared Phys. Technol. 2016. Vol. 76. P . 38–51.

7. Ginzburg N. S., Sergeev A. S., Zotova I. V. Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators // Phys. P lasmas. 2015. Vol. 22, № 3. P. 033101-1-5.

8. Бакунин В. Л., Денисов Г. Г., Новожилова Ю. В. Зоны захвата частоты многомодового гиротрона мегаваттного уровня мощности внешним сигналом // Изв. вузов. Радиофизика. 2015. Т. 58, № 12. С. 999–1011.

9. Новожилова Ю. В., Денисов Г. Г., Глявин М. Ю., Рыскин Н. М., Бакунин В. Л., Богдашов А. А., Мельникова М. М., Фокин А. П. Стабилизация частоты гиротрона под влиянием внешнего монохроматического сигнала или отраженной от нагрузки волны : обзор // Изв. вузов. Прикладная нелинейная динамика. 2017. Т. 25, № 1. С. 4–11.

10. Yakunina K. A., Kuznetsov A. P., Ryskin N. M. Injection locking of an electronic maser in the hard excitation mode // Phys. Plasmas. 2015. Vol. 22, № 11. P.113107-1-9.

11. Nusinovich G. S. Review of the theory of mode interaction in gyrodevices // IEEE Trans. Plasma Sci. 1999. Vol. 27, № 2. P. 313–326.

12. Моисеев М. А., Нусинович Г. С. К теории многомодовой генерации в гиромонотроне // Изв. вузов. Радиофизика. 1974. Т. 17, № 11. С. 1709–1717.

13. Мельникова Г. Н., Тарантович Т. М. Конкуренция мод и режимы захвата автогенератора // Изв. вузов. Радиофизика. 1976. Т.19, № 8. С. 1156–1161.

14. Нусинович Г. С., Родыгина Л. С., Тарантович Т. М. К теории синхронизации многомодовых генераторов с «жестким» самовозбуждением // Радиотехника и электроника. 1978. Т. 23, № 1. С. 91–96.

15. Кузнецов А. П., Кузнецов С. П., Рыскин Н. М. Нелинейные колебания. М. : Физматлит, 2002. 292 с.

16. Программный пакет XPPAUTO : [сайт]. URL: http://www.math.pitt.edu/~bard/xpp/xpp.html (дата обращения: 25.12.2018).

17. Бакунин В. Л., Денисов Г. Г., Завольский Н. А., Моисеев М. А. Зоны устойчивой одномодовой генерации в гиротроне со сверхразмерным резонатором // Изв. вузов. Прикладная нелинейная динамика. 2012. Т. 20, № 6. С. 67–81.

Краткое содержание:
(downloads: 50)