Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Kholuianova I. A., Bogomolov S. A., Anishchenko V. S. Synchronization of Chimera States in Ensembles of Nonlocally Coupled Cubic Maps. Izvestiya of Sarat. Univ. Physics. , 2018, vol. 18, iss. 2, pp. 103-111. DOI: 10.18500/1817-3020-2018-18-2-103-111

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 37)

Synchronization of Chimera States in Ensembles of Nonlocally Coupled Cubic Maps

Kholuianova Inna Aleksandrovna, Saratov State University
Bogomolov Sergei Alekseevich, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University

Background and Objectives: Effects of mutual and external synchronization of chimera states are studied in two coupled ensembles of discrete maps. Each of the ensembles is a onedimensional ring of nonlocally coupled cubic maps in the chaotic oscillation mode. In order to create differences in the dynamics of the ensembles when there is no coupling between them, a mismatch is introduced in the parameters of the individual oscillators of the first and second rings. Effects of external and mutual synchronization of chimera states are explored in detail. Materials and Methods: The effect of synchronization of spatio-temporal structures in two coupled ensembles of discrete nonlinear oscillators is studied numerically. The identity of synchronous structures and synchronization regions was quantified by of calculating the cross-correlation coefficient between the corresponding oscillators of interconnected ensembles. Results: The effects of mutual and external synchronization of chimera structures have been established and confirmed by snapshots of the amplitude of oscillations, by calculations of the cross-correlation coefficient between the respective elements of the ensembles and by plotting the synchronization regions on the coupling parameter. Conclusions: The paper presents the numerical results which show that the realization of the effects of mutual and external synchronization of chimera states can be realized in two nonlocally coupled ensembles of cubic maps. The identity of synchronous chimera states and the presence of a finite region of synchronization in the variation of the coupling coefficient between the interacting ensembles are confirmed.

  1. Afraimovich V. S., Nekorkin V. I., Osipov G. V., Shalfeev V. D. Stability, Structures and Chaos in Nonlinear Synchronization Networks. Singapore, World Scientific, 1995. 260 p. 
  2. Nekorkin V. I., Velarde M. G. Synergetic phenomena in active lattices. Berlin, Heidelberg, Springer, 2002. 357 p. DOI: https://doi.org/10.1007/978-3-642-56053-8
  3. Osipov G. V. Synchronization in Oscillatory Networks. Berlin, Heidelberg, Springer, 2007. 370 p. 
  4. Pikovsky A., Rosenblum M. G., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge, Cambridge University Press, 2001. 412 p. 
  5. Nekorkin V. I., Makarov V. A. Spatial chaos in a chain of coupled bistable oscillators. Phys. Rev. Lett., 1995, vol. 74, pp. 4819–4822. 
  6. Nekorkin V. I., Kazantsev V. B., Velarde M. G. Mutual synchronization of two lattices of bistable elements. Phys. Lett. A, 1997, vol. 236, pp. 505–512. 
  7. Nekorkin V. I., Voronin M. L., Velarde M. G. Clusters in an ensemble of globally coupled bistable oscillators. Eur. Phys. J. B., 1999, vol. 9, no. 3, pp. 533–543. 
  8. Belykh V. N., Belykh I. V., Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems. Phys. Rev. E., 2000, vol. 62, iss. 5, pp. 6332–6345. DOI: https://doi.org/10.1103/PhysRevE.62.6332
  9. Belykh V. N., Belykh I. V., Mosekilde E. Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys. Rev. E. 2001, vol. 63, iss. 3, pp. 036216. DOI: https://doi.org/10.1103/PhysRevE.63.036216
  10. Akopov A., Astakhov V., Vadivasova T., Shabunin A., Kapitaniak T. Frequency synchronization of clusters in coupled extended systems. Phys. Lett. A, 2005, vol. 334, pp. 169–172. 
  11. Pecora L. M., Sorrentino F., Hagerstrom A. M. Cluster synchronization, and isolated desynchronization in complex networks with symmetries. Nature Commun. 2014, vol. 5, pp. 4079. DOI: https://doi.org/10.1038/ncomms5079
  12. Kuramoto Y., Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Noninear Phenomena of Complex Systems, 2002, vol. 5, no. 4, pp. 380–385.
  13. Abrams D. M., Strogatz S. H. Chimera states for coupled oscillators. Phys. Rev. Lett., 2004, vol. 93, iss. 17, pp. 174102. DOI: https://doi.org/10.1103/PhysRevLett.93.174102
  14. Panaggio M. J., Abrams D. M. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity, 2015, vol. 28, pp. R67–R87. DOI: https://doi.org/10.1088/0951-7715/28/3/R67
  15. Wolfrum M., Omel’chenko O. E. Chimera states are chaotic transients. Phys. Rev. E., 2011, vol. 84, iss. 1, pp. 015201. DOI: https://doi.org/10.1103/physreve.84.015201
  16. Omelchenko I., Maistrenko Y., Hӧvel P., Schӧll E. Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett., 2011, vol. 106, iss. 23, pp. 234102. DOI: https://doi.org/10.1103/PhysRevLett.106.234102
  17. Omelchenko I., Riemenschneider B., Hӧvel P., Maistrenko Y., Schӧll E. Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E, 2012, vol. 85, iss. 2, pp. 026212. DOI: https://doi.org/10.1103/PhysRevE.85.026212 
  18. Bogomolov S. A., Slepnev A. V., Strelkova G. I., Schӧll E., Anishchenko V. S. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems. Commun. Nonlinear. Sci. Numer. Simul., 2017, vol. 43, pp. 25–36. DOI: https://doi.org/10.1016/j.cnsns.2016.06.024
  19. Vadivasova T. E., Strelkova G. I., Bogomolov S. A., Anishchenko V. S. Correlation analysis of the coherenceincoherence transition in a ring of nonlocally coupled logistic maps. Chaos, 2016, vol. 26, pp. 093108. DOI: https://doi.org/10.1063/1.4962647
Краткое содержание:
(downloads: 42)