Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Plastun I. L., Naumov A. A., Zhulidin P. A., Filin P. D. Spectral manifestations of amino acids from immunoglobulin and tumor necrosis factor composition intermolecular interaction and effect of cyanine 7 on this interaction. Izvestiya of Saratov University. Physics , 2022, vol. 22, iss. 1, pp. 46-61. DOI: 10.18500/1817-3020-2022-22-1-46-61, EDN: CYOHDO

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.03.2022
Full text:
(downloads: 259)
Language: 
Russian
Article type: 
Article
UDC: 
539.194:539.196.3:544.174.3
EDN: 
CYOHDO

Spectral manifestations of amino acids from immunoglobulin and tumor necrosis factor composition intermolecular interaction and effect of cyanine 7 on this interaction

Autors: 
Plastun Inna L'vovna, Yuri Gagarin State Technical University of Saratov
Naumov Anatoly A., Yuri Gagarin State Technical University of Saratov
Zhulidin Pavel Andreevich, Yuri Gagarin State Technical University of Saratov
Filin Pavel Dmitrievich, Yuri Gagarin State Technical University of Saratov
Abstract: 

Immunoglobulin and tumor necrosis factor complex formation, which is the basis of immunosuppressive drug etanercept therapeutic action, has been studied using quantum chemical modeling and molecular dynamics. The effect on the possibility of cyanine 7 on hydrogen bonds formation between amino acids from tumor necrosis factor and immunoglobulin has been considered. Analysis of dye effect on tumor necrosis factor and immunoglobulin complexation is caused by need for its use as a fluorescent label of etanercept when studying this drug passing through vessels and tissues of body in vivo. Computer simulation was based on molecular structures and IR spectra calculation using the density functional theory methods, followed by an analysis of formed hydrogen bonds parameters, as well as on the study of tumor necrosis factor protein structure dynamics. It has been found that cyanine 7 has a weak effect on amino acids complexation and, therefore, does not lead to therapeutic effect decrease, which makes it possible to use cyanine 7 for labeling etanercept. 

Acknowledgments: 
Authors express their gratitude to the senior researcher of the Laboratory for Theranostics Remotely Controlled Systems in Educational and Scientific Institute of Nanostructures and Biosystems of Saratov State University PhD in chemistry Oksana A. Mayorova and the researcher of the Center for Neurobiology and Neurorehabilitation of the Autonomous non-profit educational organization of higher professional education “Skolkovo Institute of Science and Technology” PhD in biology Olga A. Sindeeva for proposing an interesting and promising task of great practical importance for medicine and biophysics. The reported study was funded by RFBR according to the research project No. № 20-33-90250.
Reference: 
  1. Aggarwal B. Signalling pathways of the TNF super-family : A double-edged sword. Nature Reviews Immunology, 2003, vol. 3, pp. 745–756. https://www.doi.org/10.1038/nri1184
  2. Wingfield P., Pain R. H., Craig S. Tumour necrosis factor is a compact trimer. FEBS Letters, 1987, vol. 211, iss. 2, pp. 179–184. https://www.doi.org/10.1016/0014-5793(87)81432-1
  3. Stangel M., Schumacher H. C., Ruprecht K., Boegner F., Marx P. Immunoglobulins for Intravenous Use Inhibit TNFα Cytotoxicity In Vitro. Immunological Investigations, 1997, vol. 26, iss. 5–7, pp. 569–578. https://www.doi.org/10.3109/08820139709088541
  4. Haraoui B., Bykerk V. Etanercept in the treatment of rheumatoid arthritis. Therapeutics and Clinical Risk Management, 2007, vol. 3, iss. 1, pp. 99–105. https://www.doi.org/10.2147/tcrm.2007.3.1.99
  5. Schmid A. S., Neri D. Advances in antibody engineering for rheumatic diseases. Nat. Rev. Rheumatol., 2019, vol. 15, pp. 197–207. https://www.doi.org/10.1038/s41584-019-0188-8
  6. Banner D. W., D’Arcy A., Janes W., Gentz R., Schoenfeld H.-J., Broger C., Loetscher H., Lesslauer W. Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex : Implications for TNF receptor activation. Cell, 1993, vol. 73, iss. 3, pp. 431–445. https://www.doi.org/10.1016/0092-8674(93)90132-A
  7. Drugbank. Available at: https://go.drugbank.com/drugs/DB00005 (accessed 25 January 2022).
  8. Steed J. W., Atwood J. L. Supramolecular Chemistry. 2 nd ed. New York, John Wiley & Sons, 2009. 1002 p.
  9. Lehn J.-M. Supramolecular Chemistry. Concepts and Perspectives. Weinheim, New York, Basel, Cambridge, Tokyo, VCH Verlagsgesellschaft mbH, 1995. 334 p.
  10. Nelson D. L., Cox M. M. Lehninger Principles of Biochemistry. 5th ed. New York, W. H. Freeman and Company, 2008. 1303 p.
  11. Kohn W. Nobel Lecture : Electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys., 1999, vol. 71, no. 5, pp. 1253–1265. https://www.doi.org/10.1103/RevModPhys.71.1253
  12. Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 1993, vol. 98, no. 7, pp. 5648–5652. https://www.doi.org/10.1063/1.464913
  13. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven Jr. T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., AlLaham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong W., Gonzalez C., Pople J. A. Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh PA, 2003. 302 p.
  14. Avogadro – Free cross-platform molecular editor – Avogadro. Funding for the Avogadro manual was provided by the University of Pittsburgh Department of Chemistry. Pittsburgh, Pensylvania, 2015. Available at: https://avogadro.cc/ (accessed 10 December 2021).
  15. Bokarev A. N., Plastun I. L. Program for graphical visualization of numerical simulation results based on quantum mechanics methods. Certificate of state registration of a computer program 2015616290 Russian Federation; copyright holder Federal State Budgetary Educational Institution of Higher Professional Education “Yuri Gagarin State Technical University of Saratov”. No. 2015612953 ; declared. 13 April 2015 ; registered 05 June 2015, Bull. no. 1. 1 p.
  16. Berendsen H. J. C., van der Spoel D., van Drunen R. GROMACS : A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 1995, vol. 91, iss. 1–3, pp. 43–56. Available at: https://www.gromacs.org/ (accessed 25 December 2021). https://www.doi.org/10.1016/0010-4655(95)00042-E
  17. Jorgensen W. L., Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] force field for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988, vol. 110, no. 6, pp. 1657–1666. https://www.doi.org/10.1021/ja00214a001
  18. RCSB Protein Data Bank. Available at: https://www.rcsb.org (accessed 25 December 2021).
  19. Swiss-PdbViewer. Available at: https://spdbv.unil.ch/ (accessed 25 December 2021).
  20. SpectraBase. Available at: https://spectrabase.com/spectrum/7kr7mSoNW0L (accessed 25 December 2021).
  21. SpectraBase. Available at: https://spectrabase.com/spectrum/KI2ZbIxbL2R (accessed 25 December 2021).
  22. SpectraBase. Available at: https://spectrabase.com/spectrum/8L47PqQWVnH (accessed 25 December 2021).
  23. Iogansen A. V. Infrared Spectroscopy and Spectral Determination of Hydrogen Bond Energy. In: N. D. Sokolov, ed. Vodorodnaia sviaz’ [Hydrogen Bond]. Moscow, Nauka Publ., 1981, pp. 112–155 (in Russian).
  24. Babkov L. M., Puchkovskaya G. A., Makarenko S. P., Gavrilko T. A. IK spektroskopiia molekuliarnukh kristallov s vodorodnymi sviaziami [IR Spectroscopy of Molecular Crystals with Hydrogen Bonds]. Kiev, Naukova dumka Publ., 1989. 169 p. (in Russian).
Received: 
30.12.2021
Accepted: 
04.02.2022
Published: 
31.03.2022