Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Pavlov A. N., Anishchenko V. S. Multifractal Analysis of Signals Based on Wavelet-Transform. Izvestiya of Sarat. Univ. Physics. , 2007, vol. 7, iss. 1, pp. 3-25. DOI: 10.18500/1817-3020-2007-7-1-3-25

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 57)

Multifractal Analysis of Signals Based on Wavelet-Transform

Pavlov Alexyi Nikolaevich, Saratov State University
Anishchenko Vadim Semenovich, Saratov State University

Main ideas of multifractal analysis based on the wavelet-transform are presented (the wavelettransform modulus maxima method). Possibilities and limitations of the given approach at analysis of complex signals are studied. Advantages of multifractal technique over the classical correlation analysis are discussed for the case of nonstationary and short data. Phenomena of the multifractality loss in the dynamics of different systems are considered.

  1. Mandelbrot B.B. The fractal geometry of nature. San Francisco: W.H. Freeman and company, 1982.
  2. Halsey T.C., Jensen M.H., Kadanoff L.P. et al. Fractal measures and their singularities: The characterization of strange sets // Phys. Rev. A. 1986. V.33. P.1141−1151.
  3. Tel T. Fractals, multifractals, and thermodynamics // Z. Naturforsh. 1988. V.43a. P.1154−1174.
  4. Федер Е. Фракталы. М.: Мир, 1991.
  5. Шредер М. Фракталы, хаос, степенные законы. М.; Ижевск: Регулярная и хаотическая динамика, 2001.
  6. Пайтген Х.О, Рихтер П.Х. Красота фракталов. М.: Мир, 1993.
  7. Family F., Vicsek T. Dynamics of Fractal Surfaces. Singapore: World Scientific, 1991.
  8. Зельдович Я.Б., Соколов Д.Д. Фракталы, подобие, промежуточная ассимптотика // Успехи физических наук. 1985. Т.146, №2. С.493−506.
  9. Соколов И.М. Размерности и другие геометрические критические показатели в теории протекания // Успехи физических наук. 1986. Т.150, №2. С.221−255.
  10. Зосимов В.В., Лямшев Л.М. Фракталы в волновых процессах // Успехи физических наук. 1995. Т.165, №4. С.361−402.
  11. Vainshtein S.I., Sreenivasan K.R., Pierrehumbert R.T. et al. Scaling exponents for turbulence and other random processes and their relationships with multifractal structure // Phys. Rev. E. 1994. V.50. P.1823−1835.
  12. Eisenberg E., Bunde A., Havlin S., Roman H.E. Range of multifractality for random walks on random fractals // Phys. Rev. E. 1993. V.47. P.2333−2235.
  13. Dräger J., Bunde A. Multifractal features of random walks and localized vibrational excitations on random fractals: dependence on the averaging procedures // Phys. Rev. E. 1996. V.54. P.4596−4602.
  14. Arneodo A., Decoster N., Roux S.G. Intermittency, lognormal statistics, and multifractal cascade process in highresolution satellite images of cloud structure // Phys. Rev. Lett. 1999. V.83. P.1255−1258.
  15. Chabra A., Meneveau C., Jensen R.V., Sreenivasan K.R. Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence // Phys. Rev. A. 1989. V.40. P.5284−5294.
  16. Benzi R., Paladin G., Parisi G., Vulpiani A. On the multifractal nature of fully developed turbulence and chaotic systems // J. Phys. A. 1984. V.17. P.3521−3531.
  17. Baddi R., Broggi G. Measurement of the dimension spectrum f(α): Fixed-mass approach // Phys. Lett. A. 1988. V.131. P.339−343.
  18. Feigenbaum M.J. Some characterizations of strange sets // J. Stat. Phys. 1987. V.46. P.919−924.
  19. Jensen M.H., Kadanoff L.P., Procaccia I. Scaling structure and thermodynamics of strange sets // Phys. Rev. A. 1987. V.36. P.1409−1420.
  20. Mandelbrot B.B. Fractals and Multifractals: Noise, Turbulence and Galaxies. N.Y.: Springer-Verlag, 1989.
  21. Strait B.J., Dewey T.G. Multifractals and decoded walks: applications to protein sequence correlations // Phys. Rev. E. 1995. V.52. P.6588−6592.
  22. Glazier J.A., Raghavachari S., Berthelsen C.L., Skolnick M.H. Reconstructing phylogeny from the multifractal spectrum of mitochondrial DNA // Phys. Rev. E. 1995. V.51. P.2665−2668.
  23. Hentschel H.G.E. Stochastic multifractality and universal scaling distributions // Phys. Rev. E. 1994. V.50. P.243−261.
  24. Wiklund K.O., Elgin J.N. Multifractality of the Lorenz system // Phys. Rev. E. 1996. V.54. P.1111−1119.
  25. Pavlov A.N., Ebeling W., Molgedey L. et al. Scaling features of texts, images and time series // Physica A. 2001. V.300. P.310−324.
  26. Pavlov A.N., Sosnovtseva O.V., Ziganshin A.R. et al. Multiscality in the dynamics of coupled chaotic systems // Physica A. 2002. V.316. P.233−249.
  27. Frish U., Parisi G. Fully developed turbulence and intermittency // Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics / Eds. M. Ghil, R. Benzi, G. Parisi. Amsterdam: North-Holland, 1985. P.71−88.
  28. Barabasi A.L., Vicsek T. Multyfractality of self-affine fractals // Phys. Rev. A. 1991. V.44. P.2730−2733.
  29. Gagne Y., Hopfinger E., Frisch U. A new universal scaling for fully developed turbulence: The distribution of velocity increments // New Trends in Nonlinear Dynamics and Pattern Forming Phenomena: The Geometry of Nonequilibrium / Eds. P. Coullet, P. Huerre. N.Y.: Plenum Press, 1989. P.315−319.
  30. Muzy J.F., Bacry E., Arneodo A. Wavelets and multifractal formalism for singular signals: application to turbulence data // Phys. Rev. Lett. 1991. V.67. P.3515−3518.
  31. Muzy J.F., Bacry E., Arneodo A. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method // Phys. Rev. E. 1993. V.47. P.875−884.
  32. Ivanov P.Ch., Nunes Amaral L.A., Goldberger A.L. et al. Multifractality in human heartbeat dynamics // Nature. 1999. V.399. P.461−465.
  33. Arneodo A., Aubenton-Carafa Y.D., Audit B. et al. What can we learn with wavelets about DNA sequences? // Physica A. 1998. V.249. P.439−448. Физика 25 А.Н. Павлов, В.С.Анищенко. Мультифрактальный анализ сигналов
  34. Stanley H.E., Nunes Amaral L.A., Goldberger A.L. et al. Statistical physics and physiology: monofractal and multifractal approaches // Physica A. 1999. V.270. P.309−324.
  35. Nunes Amaral L.A., Ivanov P.Ch., Aoyagi N. et al. Behavioral-independent features of complex heartbeat dynamics // Phys. Rev. Lett. 2001. V.86. P.6026−6030.
  36. Ivanov P.Ch., Nunes Amaral L.A., Goldberger A.L. et al. From 1/f noise to multifractal cascades in heartbeat dynamics // Chaos. 2001. V.11. P.641−652.
  37. Marrone A., Polosa A.D., Scioscia G. et al. Multiscale analysis of blood pressure signals // Phys. Rev. E. 1999. V.60. P.1088−1091.
  38. Gabor D. Theory of communications // J. Inst. Electr. Eng. (London). 1946. V.93. P.429−457.
  39. Вайнштейн Л.А., Вакман Д.Е. Разделение частот в теории колебаний и волн. М.: Наука, 1983.
  40. Peng C.-K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series // Chaos. 1995. V.5. P.82−87.
  41. Peng C.-K., Buldyrev S.V., Havlin S. et al. Mosaic organization of DNA nucleotides // Phys. Rev. E. 1994. V.49. P.1685−1689.
  42. Grossmann A., Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape // S.I.A.M. J. Math. Anal. 1984. V.15. P.723−736.
  43. Meyer Y. Wavelets: Algorithms and Applications. Philadelphie: S.I.A.M., 1993.
  44. Meyer Y. Wavelets and Operators. Cambridge University Press, 1993.
  45. Chui C.K. An Introduction to Wavelets. N.Y.: Academic Press, 1992.
  46. Daubechies I. Ten lectures on Wavelets. Philadelphie: S.I.A.M., 1992.
  47. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ в приложениях к задачам нелинейной динамики / ГосУНЦ «Колледж». Саратов, 2002.
  48. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1996. T.166, №11. С.1145−1170.
  49. Дремин И.М., Иванов О.В., Нечитайло В.А. Вейвлеты и их применение // Успехи физических наук. 2001. T.171. С.465−501.
  50. Hausdorff F. Dimension and äusseres mass // Mathematische Annalen. 1919. V.79. P.157−179.
  51. Besicovitch A.S. On the sum of digits of real numbers represented in the dyadic system // Mathematische Annalen. 1935. V.110. P.321−330.
  52. Falconer K.J. The Geometry of Fractal Sets. Cambridge University Press, 1985.
  53. Farmer J.D., Ott E., Yorke J.A. The dimension of chaotic attractors // Physica D. 1983. V.7. P.153−180.
  54. Muzy J.F., Bacry E., Arneodo A. The multifractal formalism revisited with wavelets // Int. J. Bifurcation Chaos. 1994. V.4. P.245−302.
  55. Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. М.; Ижевск: Регулярная и хаотическая динамика, 2001.
  56. Grassberger P. Generalized dimensions of strange attractors // Phys. Lett. A. 1983. V.97. P.227−230.
  57. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors // Physica D. 1983. V.9. P.189−208.
  58. Hentschel H.G., Procaccia I. The infinite number of generalized dimensions of fractals and strange attractors // Physica D. 1983. V.8. P.435−444.
  59. Grassberger P., Procaccia I. Characterization of strange attractors // Phys. Rev. Lett. 1983. V.50. P.346−349.
  60. Bowen R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math. N.Y.: Springer-Verlag, 1975. V.470.
  61. Collet P., Lebowiz J., Porzio A. The dimension spectrum of some dynamical systems // J. Stat. Phys. 1987. V.47. P.609−644.
  62. Veneziano D., Moglen G.E., Bras R.L. Multifractal analysis: pitfalls of standard procedures and alternatives // Phys. Rev. E. 1995. V.52. P.1387−1398.
  63. Afraimovich V., Zaslavsky G.M. Fractal and multifractal properties of exit times and Poincare recurrences // Phys. Rev. E. 1997. V.55. P.5418−5426.
  64. Postnov D.E., Vadivasova T.E., Sosnovtseva O.V. et al. Role of multistability in the transition to chaotic phase synchronization // Chaos. 1999. V.9. P.227−232.
  65. Pavlov A.N., Sosnovtseva O.V., Mosekilde E. Scaling features of multimode motions in coupled chaotic oscillators // Chaos, Solitons and Fractals. 2003. V.16. P.801−810.
  66. Benzi R., Sutera A., Vulpiani A. The mechanism of stochastic resonance // J. Phys. A. 1981. V.14. P.L453−457.
  67. Nicolis C., Nicolis G. Stochastic aspects of climatic transitions additive fluctuations // Tellus. 1981. V.33. P.225−234.
  68. Анищенко В.С., Нейман А.Б., Мосс Ф., Шиманский-Гайер Л., Стохастический резонанс как индуцированный шумом эффект увеличения степени порядка // Успехи физических наук. 1999. T.169. С.7−38.
  69. Silchenko A., Hu C.K. Multifractal characterization of stochastic resonance // Phys. Rev. E. 2001. V.63. P.041105.
  70. Anishchenko V.S., Astakhov V.V., Neiman A.B. et al. Nonlinear Dynamics of Chaotic and Stochastic Systems. Berlin: Springer-Verlag, 2002.
  71. Анищенко В.С., Астахов В.В., Вадивасова Т.Е. et al. Нелинейные эффекты в хаотических и стохастических системах. М.; Ижевск: Регулярная и хаотическая динамика, 2003.
  72. Pavlov A.N., Ziganshin A.R., Klimova O.A. Multifractal characterization of blood pressure dynamics: stress-induced phenomena // Chaos, Solitons and Fractals. 2004. V.24. P.57−63.