Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ponomarenko V. I., Kulminskiy D. D., Borovkova E. I., Prokhorov M. D. Control of Collective Dynamics in a Network of Bistable Time-Delay Systems Coupled via the Mean Field. Izvestiya of Saratov University. Physics , 2019, vol. 19, iss. 4, pp. 258-269. DOI: 10.18500/1817-3020-2019-19-4-258-269

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
02.12.2019
Full text:
(downloads: 288)
Language: 
Russian
UDC: 
537.86

Control of Collective Dynamics in a Network of Bistable Time-Delay Systems Coupled via the Mean Field

Autors: 
Ponomarenko Vladimir Ivanovich, Saratov State University
Kulminskiy Danil Dmitrievich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Borovkova Ekaterina Igorevna, Saratov State University
Prokhorov Mikhail Dmitrievich, Saratov State University
Abstract: 

Background and Objectives: The object of our study is a network of identical bistable time-delayed feedback systems coupled via the mean field and driven by an external harmonic signal. The mean field that provides the global coupling of time-delay systems has its own delay time, which allows one to take into account the final speed of signal propagation and processing in the medium through which the oscillators are connected. The objective of the paper is to study the possibility of controlling the collective dynamics in the network of coupled bistable time-delay oscillators using an external harmonic force. Materials and Methods: The nonlinear function of oscillators and its parameters are chosen in such a way as to ensure the existence of bistable oscillatory regimes in which the basic frequencies of oscillations of the system differ by three times, with one of the bistable regimes being periodic and the other regime being chaotic. The initial conditions in the coupled oscillators are assigned in such a way that two clusters take place in the studied network, each of which, depending on the value of the phase shift of the mean field signal, can demonstrate both the synchronous and non-synchronous behavior of the elements included in it. The control of the oscillation regimes in the network is carried out using the variation of the parameters of the mean field and external harmonic signal. Results: It is shown that using a harmonic signal of relatively small amplitude, it is possible to effectively control the oscillation regimes, in particular, to create or destroy chimera states in a network of identical bistable systems with a time-delayed feedback that are globally coupled via the mean field

Reference: 
  1. Anishchenko V. S., Astakhov V. V., Nikolaev V. V., Shabunin A. V. Chaotic synchronization in a network of symmetrically coupled oscillators. Journal of Communications Technology and Electronics, 2000, vol. 45, no. 2, pp. 179–185.  
  2. Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D. U. Complex networks: Structure and dynamics. Physics Reports, 2006, vol. 424, pp. 175–308. DOI: https://doi.org/10.1016/j.physrep.2005.10.009
  3. Osipov G. V., Kurths J., Zhou C. Synchronization in Oscillatory Networks. Berlin, Springer, 2007. 370 p.
  4. Klinshov V. V., Nekorkin V. I. Synchronization of delay-coupled oscillator networks. Physics-Uspekhi, 2013, vol. 56, no. 12, pp. 1217–1229. DOI: https://doi.org/10.3367/UFNe.0183.201312c.1323
  5. Otto A., Radons G., Bachrathy D., Orosz G. Synchronization in networks with heterogeneous coupling delays. Physical Review E, 2018, vol. 97, pp. 012311. DOI: https://doi.org/10.1103/PhysRevE.97.012311
  6. Abrams D. M., Strogatz S. H. Chimera states for coupled oscillators. Physical Review Letters, 2004, vol. 93, 174102. DOI: https://doi.org/10.1103/PhysRevE.97.012311
  7. Schmidt L., Schönleber K., Krischer K., García-Morales V. Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos, 2014, vol. 24, 013102. DOI: https://doi.org/10.1063/1.4858996
  8. Schmidt L., Krischer K. Clustering as a prerequisite for chimera states in globally coupled systems. Physical Review Letters, 2015, vol. 114, 034101. DOI: https://doi.org/10.1103/PhysRevLett.114.034101
  9. Mishra A., Hens C., Bose M., Roy P. K., Dana S. K. Chimeralike states in a network of oscillators under attractive and repulsive global coupling. Physical Review E, 2015, vol. 92, 062920. DOI: https://doi.org/10.1103/PhysRevE.92.062920
  10. Semenova N., Zakharova A., Anishchenko V., Schöll E. Coherence-resonance chimeras in a network of excitable elements. Physical Review Letters, 2016, vol. 117, 014102. DOI: https://doi.org/10.1103/PhysRevLett.117.014102
  11. Shepelev I. A., Vadivasova T. E., Bukh A. V., Strelkova G. I., Anishchenko V. S. New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction. Physics Letters A, 2017, vol. 381, pp. 1398–1404. DOI: https://doi.org/10.1016/j.physleta.2017.02.034
  12. Anishchenko V. S., Strelkova G. I. Chimera structures in the ensembles of nonlocally coupled chaotic oscillators. Radiophysics and Quantum Electronics, 2019, vol. 61, iss. 8–9, pp. 659–671. DOI: https://doi.org/10.1007/s11141-019-09926-5
  13. Kholuianova I. A., Bogomolov S. A., Anishchenko V. S. Synchronization of chimera states in ensembles of nonlocally coupled cubic maps. Izv. Saratov Univ. (N. S.), Ser. Physics, 2018, vol. 18, iss. 2, pp. 103–111 (in Russian). DOI: https://doi.org/10.18500/1817-3020-2018-18-2-103-111
  14. Andrzejak R. G., Ruzzene G., Malvestio I., Schindler K., Schöll E., Zakharova A. Mean fi eld phase synchronization between chimera states. Chaos, 2018, vol. 28, 091101. DOI: https://doi.org/10.1063/1.5049750
  15. Yao N., Huang Z.-G., Ren H.-P., Grebogi C., Lai Y.-C. Self-adaptation of chimera states. Physical Review E, 2019, vol. 99, 010201. DOI: https://doi.org/10.1103/PhysRevE.99.010201
  16. Sawicki J., Omelchenko I., Zakharova A., Schöll E. Delay-induced chimeras in neural networks with fractal topology. The European Physical Journal B, 2019, vol. 92, 54. DOI: https://doi.org/10.1140/epjb/e2019-90309-6
  17. Sun J. Q., Ding G. Advances in Analysis and Control of Time-Delayed Dynamical Systems. Singapore, World Scientifi c, 2013. 352 p.
  18. Sieber J., Omel’chenko O. E., Wolfrum M. Controlling unstable chaos: Stabilizing chimera states by feedback. Physical Review Letters, 2014, vol. 112, 054102. DOI: https://doi.org/10.1103/PhysRevLett.112.054102
  19. Gambuzza L. V., Frasca M. Pinning control of chimera states. Physical Review E, 2016, vol. 94, 022306. DOI: https://doi.org/10.1103/PhysRevE.94.022306
  20. Maslennikov O. V., Nekorkin V. I. Adaptive dynamical networks. Physics-Uspekhi, 2017, vol. 60, no. 7, pp. 694–704. DOI: https://doi.org/10.3367/UFNe.2016.10.037902
  21. Bera B. K., Ghosh D., Parmananda P., Osipov G. V., Dana S. K. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control. Chaos, 2017, vol. 27, 073108. DOI: https://doi.org/10.1063/1.4993459
  22. Gjurchinovski A., Schöll E., Zakharova A. Control of amplitude chimeras by time delay in oscillator networks. Physical Review E, 2017, vol. 95, 042218. DOI: https://doi.org/10.1103/PhysRevE.95.042218
  23. Shepelev I. A., Vadivasova T. E. Inducing and destruction of chimeras and chimera-like states by an external harmonic force. Physics Letters A, 2018, vol. 382, pp. 690–696. DOI: https://doi.org/10.1016/j.physleta.2017.12.055
  24.  Yuan W.-J., Zhou J.-F., Sendiña-Nadal I., Boccaletti S., Wang Z. Adaptive control of dynamical synchronization on evolving networks with noise disturbances. Physical Review E, 2018, vol. 97, 022211. DOI: https://doi.org/10.1103/PhysRevE.97.022211
  25. Novičenko V., Ratas I. In-phase synchronization in complex oscillator networks by adaptive delayed feedback control. Physical Review E, 2018, vol. 98, 042302. DOI: https://doi.org/10.1103/PhysRevE.98.042302
  26. Hart J. D., Zhang Y., Roy R., Motter A. E. Topological control of synchronization patterns: Trading symmetry for stability. Physical Review Letters, 2019, vol. 122, 058301. DOI: https://doi.org/10.1103/PhysRevLett.122.058301
  27. Ruzzene G., Omelchenko I., Schöll E., Zakharova A., Andrzejak R. G. Controlling chimera states via minimal coupling modifi cation. Chaos, 2019, vol. 29, 0511031. DOI: https://doi.org/10.1063/1.5097570
  28. Ikeda K., Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D, 1987, vol. 29, pp. 223–235. DOI: https://doi.org/10.1016/0167-2789(87)90058-3
  29. Yeldesbay A., Pikovsky A., Rosenblum M. Chimeralike states in an ensemble of globally coupled oscillators. Physical Review Letters, 2014, vol. 112, 144103. DOI: https://doi.org/10.1103/PhysRevLett.112.144103
  30. Ponomarenko V. I., Kulminskiy D. D., Prokhorov M. D. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean fi eld. Physical Review E, 2017, vol. 96, 022209. DOI: https://doi.org/10.1103/PhysRevE.96.022209
  31. Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D. Infl uence of inertial properties and delay of the mean fi eld on the collective dynamics of globally coupled bistable delayed-feedback oscillators. Izvestiya VUZ, Applied Nonlinear Dynamics, 2018, vol. 26, iss. 1, pp. 4–20 (in Russian). DOI: https://doi.org/10.18500/0869-6632-2018-26-1-4-20