Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Пономаренко В. И., Кульминский Д. Д., Боровкова Е. И., Прохоров М. Д. Управление коллективной динамикой в сети бистабильных систем с запаздыванием, связанных через общее поле // Известия Саратовского университета. Новая серия. Серия: Физика. 2019. Т. 19, вып. 4. С. 258-269. DOI: 10.18500/1817-3020-2019-19-4-258-269

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
02.12.2019
Полный текст в формате PDF(Ru):
(загрузок: 298)
Язык публикации: 
русский
УДК: 
537.86

Управление коллективной динамикой в сети бистабильных систем с запаздыванием, связанных через общее поле

Авторы: 
Пономаренко Владимир Иванович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Кульминский Данил Дмитриевич, Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
Боровкова Екатерина Игоревна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Прохоров Михаил Дмитриевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Объект исследования – сеть идентичных бистабильных систем с запаздывающей обратной связью, связанных между собой через общее поле и находящихся под воздействием внешнего гармонического сигнала. Общее поле, осуществляющее глобальную связь систем с задержкой, имеет собственное время запаздывания, что позволяет учесть конечную скорость распространения и обработки сигналов в среде, через которую связаны осцилляторы. Цель исследования – изучить возможность управления с помощью внешнего гармонического воздействия коллективной динамикой в исследуемой сети связанных бистабильных осцилляторов с запаздыванием. Методы и подходы – нелинейная функция осцилляторов и ее параметры выбраны таким образом, чтобы обеспечить существование бистабильных колебательных режимов, в которых основные частоты колебаний осциллятора отличаются в три раза, причем один из бистабильных режимов является периодическим, а другой – хаотическим. Начальные условия в связанных осцилляторах заданы так, чтобы в исследуемой сети сформировались два кластера, каждый из которых в зависимости от величины фазового сдвига сигнала общего поля мог демонстрировать как синхронное, так и несинхронное поведение входящих в него элементов. Управление колебательными режимами в сети осуществляется с помощью вариации параметров общего поля и внешнего гармонического воздействия. Основные результаты – показано, что с помощью гармонического сигнала относительно малой амплитуды можно эффективно управлять колебательными режимами, в том числе формировать или разрушать состояния ≪химера≫, в сети идентичных бистабильных систем с запаздывающей обратной связью, глобально связанных через общее поле.

Список источников: 
  1. Anishchenko V. S., Astakhov V. V., Nikolaev V. V., Shabunin A. V. Chaotic synchronization in a network of symmetrically coupled oscillators // Радиотехника и электроника. 2000. Т. 45, № 2. С. 196-203.
  2. Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D. U. Complex networks: Structure and dynamics // Physics Reports. 2006. Vol. 424. P. 175-308. DOI: https://doi.org/10.1016/j.physrep.2005.10.009
  3. Osipov G. V., Kurths J., Zhou C. Synchronization in Oscillatory Networks. Berlin : Springer, 2007. 370 p.
  4. Клиньшов В. В., Некоркин В. И. Синхронизация автоколебательных сетей с запаздывающими связями // Успехи физических наук. 2013. T. 183, вып. 12. C. 1323-1336. DOI: https://doi.org/10.3367/UFNr.0183.201312c.1323
  5. Otto A., Radons G., Bachrathy D., Orosz G. Synchronization in networks with heterogeneous coupling delays // Physical Review E. 2018. Vol. 97. P. 012311. DOI: https://doi.org/10.1103/PhysRevE.97.012311
  6. Abrams D. M., Strogatz S. H. Chimera states for coupled oscillators // Physical Review Letters. 2004. Vol. 93. 174102. DOI: https://doi.org/10.1103/PhysRevLett.93.174102
  7. Schmidt L., Schönleber K., Krischer K., García-Morales V. Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling // Chaos. 2014. Vol. 24. 013102. DOI: https://doi.org/10.1063/1.4858996
  8. Schmidt L., Krischer K. Clustering as a prerequisite for chimera states in globally coupled systems // Physical Review Letters. 2015. Vol. 114. 034101. DOI: https://doi.org/10.1103/PhysRevLett.114.034101
  9. Mishra A., Hens C., Bose M., Roy P. K., Dana S. K. Chimeralike states in a network of oscillators under attractive and repulsive global coupling // Physical Review E. 2015. Vol. 92. 062920. DOI: https://doi.org/10.1103/Phys-RevE.92.062920
  10. Semenova N., Zakharova A., Anishchenko V., Schöll E. Coherence-resonance chimeras in a network of excitable elements // Physical Review Letters. 2016. Vol. 117. 014102. DOI: https://doi.org/10.1103/PhysRevLett.117.014102
  11. Shepelev I. A., Vadivasova T. E., Bukh A. V., Strelkova G. I., Anishchenko V. S. New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction // Physics Letters A. 2017. Vol. 381. P. 1398-1404. DOI: https://doi.org/10.1016/j.physleta.2017.02.034
  12. Анищенко В. С., Стрелкова Г. И. Химерные структуры в ансамблях нелокально связанных хаотических осцилляторов // Изв. высших учебных заведений. Радиофизика. 2018. Т. 61, № 8-9. С. 739-753.
  13. Холуянова И. А., Богомолов С. А., Анищенко В. С. Синхронизация химерных структур в ансамблях нелокально связанных кубических отображений // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2018. Т. 18, вып. 2. С. 103-111. DOI: https://doi.org/10.18500/1817-3020-2018-18-2-103-111
  14. Andrzejak R. G., Ruzzene G., Malvestio I., Schindler K., Schöll E., Zakharova A. Mean fi eld phase synchronization between chimera states // Chaos. 2018. Vol. 28. 091101. DOI: https://doi.org/10.1063/1.5049750
  15. Yao N., Huang Z.-G., Ren H.-P., Grebogi C., Lai Y.-C. Selfadaptation of chimera states // Physical Review E. 2019. Vol. 99. 010201. DOI: https://doi.org/10.1103/PhysRevE.99.010201
  16. Sawicki J., Omelchenko I., Zakharova A., Schöll E. Delay-induced chimeras in neural networks with fractal topology // The European Physical Journal B. 2019. Vol. 92. 54. DOI: https://doi.org/10.1140/epjb/e2019-90309-6
  17. Sun J. Q., Ding G. Advances in Analysis and Control of Time-Delayed Dynamical Systems. Singapore : World Scientifi c, 2013. 352 p.
  18. Sieber J., Omel’chenko O. E., Wolfrum M. Controlling unstable chaos : Stabilizing chimera states by feedback // Physical Review Letters. 2014. Vol. 112. 054102. DOI: https://doi.org/10.1103/PhysRevLett.112.054102
  19. Gambuzza L. V., Frasca M. Pinning control of chimera states // Physical Review E. 2016. Vol. 94. 022306. DOI: https://doi.org/10.1103/PhysRevE.94.022306
  20. Масленников О. В., Некоркин В. И. Адаптивные динамические сети // Успехи физических наук. 2017. Т. 187, вып. 7. С. 745-756. DOI: https://doi.org/10.3367/UFNr.2016.10.037902
  21. Bera B. K., Ghosh D., Parmananda P., Osipov G. V., Dana S. K. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control // Chaos. 2017. Vol. 27. 073108. DOI: https://doi.org/10.1063/1.4993459
  22. Gjurchinovski A., Schöll E., Zakharova A. Control of amplitude chimeras by time delay in oscillator networks // Physical Review E. 2017. Vol. 95. 042218. DOI: https://doi.org/10.1103/PhysRevE.95.042218
  23. Shepelev I. A., Vadivasova T. E. Inducing and destruction of chimeras and chimera-like states by an external harmonic force // Physics Letters A. 2018. Vol. 382. P. 690-696. DOI: https://doi.org/10.1016/j.physleta.2017.12.055
  24. Yuan W.-J., Zhou J.-F., Sendiña-Nadal I., Boccaletti S., Wang Z. Adaptive control of dynamical synchronization on evolving networks with noise disturbances // Physical Review E. 2018. Vol. 97. 022211. DOI: https://doi.org/10.1103/Phys-RevE.97.022211
  25. Novičenko V., Ratas I. In-phase synchronization in complex oscillator networks by adaptive delayed feedback control // Physical Review E. 2018. Vol. 98. 042302. DOI: https://doi.org/10.1103/PhysRevE.98.042302
  26. Hart J. D., Zhang Y., Roy R., Motter A. E. Topological control of synchronization patterns : Trading symmetry for stability // Physical Review Letters. 2019. Vol. 122. 058301. DOI: https://doi.org/10.1103/PhysRevLett.122.058301
  27. Ruzzene G., Omelchenko I., Schöll E., Zakharova A. Andrzejak R. G. Controlling chimera states via minimal coupling modifi cation // Chaos. 2019. Vol. 29. 0511031. DOI: https://doi.org/10.1063/1.5097570
  28. Ikeda K., Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback // Physica D. 1987. Vol. 29. P. 223-235. DOI: https://doi.org/10.1016/0167-2789(87)90058-3
  29. Yeldesbay A., Pikovsky A., Rosenblum M. Chimeralike states in an ensemble of globally coupled oscillators // Physical Review Letters. 2014. Vol. 112. 144103. DOI: https://doi.org/10.1103/PhysRevLett.112.144103
  30. Ponomarenko V. I., Kulminskiy D. D., Prokhorov M. D. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean fi eld // Physical Review E. 2017. Vol. 96. 022209. DOI: https://doi.org/10.1103/Phys-RevE.96.022209
  31. Кульминский Д. Д., Пономаренко В. И., Прохоров М. Д. Влияние инерционных свойств и запаздывания общего поля на коллективную динамику глобально связанных бистабильных осцилляторов с запаздыванием // Известия высших учебных заведений. Прикладная нелинейная динамика. 2018. Т. 26, № 1. С. 4-20. DOI: https://doi.org/10.18500/0869-6632-2018-26-1-4-20