For citation:
Zaytsev S. M., Bashkatov A. N., Tuchin V. V., Genina E. A. Optical Clearing as Method to Increase the Depth of Nanoparticles Detection in the Skin with OCT-Visualization. Izvestiya of Saratov University. Physics , 2018, vol. 18, iss. 4, pp. 275-284. DOI: 10.18500/1817-3020-2018-18-4-275-284
Optical Clearing as Method to Increase the Depth of Nanoparticles Detection in the Skin with OCT-Visualization
Background and Objectives: Nanoparticles of titanium dioxide are now widely used both for the creation of sunscreen filters, and as carriers of drugs. One of the ways of transepidermal delivery of these nanoparticles to the dermis of the skin is their penetration into the hair follicles. However, optical control of the filling of follicles with nanoparticles is rather difficult due to strong light scattering in the skin. Thus, the aim of the work is to investigate the possibility of increasing the optical depth of detection of nanoparticles in the hair follicle by means of optical coherence tomography in optical skin clearing. Methods and Materials: An optical coherent tomograph was used to visualize titanium nanoparticles with a diameter of ~ 25 nm, localized in the hair follicles of laboratory rats ex vivo and in vivo. For the introduction of nanoparticles into the follicles, ultrasonophoresis was used with a frequency of 1 MHz, a power of 1 W, and an irradiation time of 1 to 8 min. To increase the optical depth of detection of particles, immersion agents were additionally applied on the surface of the skin: PEG-400 or a mixture of PEG-400 and DMSO. Results: It was shown that when using a mixture of PEG-400 and DMSO, the depth of detection increased by an average of 2.8 times, while using only PEG-400, the optical depth of detection of particles increased by less than 20%. Conclusion: Thus, the use of optical clearing agents made it possible to increase the optical depth of detection of nanoparticles in the hair follicles, with the greatest efficiency demonstrated by a mixture of PEG-400 and DMSO.
1. Popov A. P., Zvyagin A. V., Lademann J., Roberts M. S., Sanchez W., Priezzhev A. V., Myllyla R. Designing inorganic light-protective skin nanotechnology products. J. Biomed. Nanotechnol., 2010, vol. 6, no. 5, pp. 432‒451. DOI: https://doi.org/10.1166/jbn.2010.1144
2. Lademann J., Richter H., Teichmann A., Otberg N., Blume-Peytavi U., Luengo J., Weiss B., Schaefer U. F., Lehr C. M., Wepf R., Sterry W. Nanoparticles ‒ an effi cient carrier for drug delivery into the hair follicles. Eur. J. Pharmaceutics and Biopharmaceutics, 2007, vol. 66, iss. 2, pp. 159‒164. DOI: https://doi.org/10.1016/j.ejpb.2006.10.019
3. Jung S., Patzelt A., Otberg N., Thiede G., Sterry W., Lademann J. Strategy of topical vaccination with nanoparticles. J. Biomed. Opt., 2009, vol. 14, iss. 2, pp. 021001. DOI: https://doi.org/10.1117/1.3080714
4. Lademann J., Knorr F., Richter H., Jung S., Meinke M. C., Rühl E., Alexiev U., Calderon M., Patzelt A. Hair follicles as a target structure for nanoparticles. J. Innov. Opt. Health Sci., 2015, vol. 8, no. 4, pp. 1530004. DOI: https://doi.org/10.1142/S1793545815300049
5. Samusev R. P., Lipchenko V. Ia. Atlas anatomii cheloveka [Atlas of human anatomy]. Moscow, Onyx 21 century, World and education, 2002, pp. 5‒13 (in Russian).
6. Azagury A., Khoury L., Enden G., Kost J. Ultrasound mediated transdermal drug delivery. Advanced Drug Delivery Reviews, 2014, vol. 72, pp. 127‒143. DOI: https://doi.org/10.1016/j.addr.2014.01.007
7. Volkova E. K., Yanina I. Y., Genina E. A., Bashkatov A. N., Konyukhova J. G., Popov A. P., Speranskaya E. S., Bucharskaya A. B., Navolokin N. A., Goryacheva I. Y., Kochubey V. I., Sukhorukov G. B., Meglinski I. V., Tuchin V. V. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing. J. Biomed. Opt., 2018, vol. 23, iss. 2, pp. 026001-1‒026001-11. DOI: https://doi.org/10.1117/1.JBO.23.2.026001
8. Zagaynova E. V., Shirmanova M. V., Kirillin M. Y., Khlebtsov B. N., Orlova A. G., Balalaeva I. V., Sirotkina M. A., Bugrova M. L., Agrba P. D., Kamensky V. A. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys. Med. Biol., 2008, vol. 53, no. 18, pp. 4995‒5009. DOI: https://doi.org/10.1088/0031-9155/53/18/010
9. Sirotkina M. A., Shirmanova M. V., Bugrova M. L., Elagin V. V., Agrba P. A., Kirillin M. Yu., Kamensky V. A., Zagaynova E. V. Continuous optical coherence tomography monitoring of nanoparticles accumulation in biologocal tissues. J. Nanoparticle Res., 2011, vol. 13, iss. 1, pp. 283‒291. DOI: https://doi.org/10.1007/s11051-010-0028-x
10. Genina E. A., Kinder S. A., Bashkatov A. N., Tuchin V. V. Contrasting in Optical Coherence Tomography Imaging of Liver by Nanoparticles. Izv. Saratov Univ. (N. S.), Ser. Physics, 2011, vol. 11, iss. 2, pp, 10‒14 (in Russian).
11. Genina E. A., Dolotov L. E., Bashkatov A. N., Tuchin V. V. Fractional laser microablation of skin: increasing the effi ciency of transcutaneous delivery of particles. Quantum Electronics, 2016, vol. 46, no. 6, pp. 502‒509. DOI: https://doi.org/10.1070/QEL16109
12. Genina E. A., Svenskaya Yu. I., Yanina I. Yu., Dolotov L. E., Navolokin N. A., Bashkatov A. N., Terentyuk G. S., Bucharskaya A. B., Maslyakova G. N., Gorin D. A., Tuchin V. V., Sukhorukov G. B. Optical monitoring of transcutaneous of composite microparticles in vivo. Biomedical Optics Express, 2016, vol. 7, iss. 6, pp. 2082‒2087. DOI: https://doi.org/10.1364/BOE.7.002082
13. Wen X., Jacques S. L., Tuchin V. V., Zhu D. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging. J. Biomed. Opt., 2012, vol. 17, iss. 6, pp. 066022. DOI: https://doi.org/10.1117/1.JBO.17.6.066022
14. Larin K.V., Ghosn M. G., Bashkatov A. N., Genina E. A., Trunina N. A., Tuchin V. V. Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. IEEE Journal of Selected Topics in Quantum Electronics, 2012, vol. 18, no. 3, pp. 1244‒1259. DOI: https://doi.org/10.1109/JSTQE.2011.2181991
15. Zhu D., Larin K. V., Luo Q., Tuchin V. V. Recent progress in tissue optical clearing. Laser & Photonics Reviews, 2013, vol. 7, iss. 5, pp. 732‒757. DOI: https://doi.org/10.1002/lpor.201200056
16. Genina E. A., Bashkatov A. N., Sinichkin Yu. P., Yanina I. Yu., Tuchin V. V. Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. Journal of Biomedical Photonics & Engineering, 2015, vol. 1, no. 1, pp. 22‒58. DOI: https://doi.org/10.18287/jbpe-2015-1-1-22
17. Tuchina D. K., Genin V. D., Bashkatov A. N., Genina E. A., Tuchin V. V. Optical clearing of skin tissue ex vivo with Polyethylene Glycol. Optics and Spectroscopy, 2016, vol. 120, iss. 1, pp. 28‒37. DOI: https://doi.org/10.1134/S0030400X16010215
18. Genina E. A., Terentyuk G. S., Bashkatov A. N., Mikheeva N. A., Kolesnikova E. A., Basko M. V., Khlebtsov B. N., Khlebtsov N. G., Tuchin V. V. Comparative study of the physical, chemical, and multimodal approaches to enhancing nanoparticle transport in the skin with model dermatitis. Nanotechnologies in Russia, 2014, vol. 9, no. 9‒10, pp. 87‒96 (in Russian).
19. Genina E. A., Bashkatov A. N., Kolesnikova E. A., Basko M. V., Terentyuk G. S., Tuchin V. V. Optical coherence tomography monitoring of enhanced skin optical clearing in rats in vivo. J. Biomed. Opt., 2014, vol. 19, iss. 2, pp. 021109. DOI: https://doi.org/10.1117/1.JBO.19.2.021109
20. Jiang J., Boese M., Turner P., Wang R. K. Penetration kinetics of dimethyl sulphoxide and glycerol in dynamic optical clearing of porcine skin tissue in vitro studied by Fourier transform infrared spectroscopic imaging. J. Biomed. Opt., 2008, vol. 13, iss. 2, pp. 021105. DOI: https://doi.org/10.1117/1.2899153
21. Genina E. A., Terentyuk G. S., Bashkatov A. N., Khlebtsov B. N., Tuchin V. V. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography. Quantum Electronics, 2012, vol. 42, no. 6, pp. 478‒483. DOI: https://doi.org/10.1070/QE2012v042n06ABEH014884
22. Tuchin V. V. Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis. 3rd ed. Bellingham, WA, USA, SPIE Press, 2015, vol. PM254. 934 p. (SPIE Tutorial Text in Optical Engineering).
23. Wang R. K., Tuchin V. V. Optical Coherence Tomography: Light Scattering and Imaging Enhancement. In: Handbook of Coherent-Domain Optical Methods. Ed. V. Tuchin. New York, Springer, 2013, pp. 665‒742. DOI: https://doi.org/10.1007/978-1-4614-5176-1_16
24. Polat B. E., Hart D., Langer R., Blankschtein D. Ultrasound- mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J. Controlled Release, 2011, vol. 152, iss. 3, pp. 330–348. DOI: https://doi.org/10.1016/j.jconrel.2011.01.006
25. Zhong H., Guo Z., Wei H., Zeng C., Xiong H., He Y., Liu S. In vitro study of ultrasound and different-concentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography. J. Biomed. Opt., 2010, vol. 15, iss. 3, pp. 036012. DOI: https://doi.org/10.1117/1.3432750
26. Xu X., Zhu Q. Sonophoretic delivery for contrast and depth improvement in skin optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2008, vol. 14, iss. 1, pp. 56‒61.
27. Zimmerley M., McClure R. A., Choi B., Potma E. O. Following dimethyl sulfoxide skin optical clearing dynamics with quantitative nonlinear multimodal microscopy. Appl. Opt., 2009, vol. 48, iss. 10, pp. D79‒D87. DOI: https://doi.org/10.1364/AO.48.000D79
28. Funke A. P., Schiller R., Motzkus H. W., Gunther C., Muller R. H., Lipp R. Transdermal delivery of highly lipophilic drugs: in vitro fl uxes of antiestrogens, permeation enhancers, and solvents from liquid formulations. Pharm. Res., 2002, vol. 19, iss. 5, pp. 661–668. DOI: https://doi.org/10.1023/A:1015314314796
- 1697 reads