graphene

Linear Model of Surface Terahertz Plasmons Amplification in Two Parallel Graphene Sheets

Amplification of terahertz plasmons in a pair of parallel active graphene monolayers is studied theoretically. It is shown that the antisymmetric mode increment of plasmons in the two parallel graphene monolayers may be several times greater than that in a single graphene layer due to deceleration of the antisymmetric plasmon mode as compared to the plasmon mode in a single graphene monolayer.

The Graphene Based Terahertz Transistor

Background and Objectives: Due to the lack of a substantial energy gap in graphene nanoribbons there are difficulties to create a fast-switching transistors for digital circuits using them. In a number of recent works, the usage of graphene nanoribbons in tunneling transistors, field effect transistors, transistors with negative resistance and in generators with pumping has been proposed for amplification of analog signals.

Plasmonic Rectification of Terahertz Radiation in a Grating-gated Graphene

The theory of the plasmonic rectification of terahertz radiation in a homogeneous graphene gated by a metal grating with an asymmetric unit cell is developed.

Total Conversion of Terahertz Wave Polarization by Graphene Microribbon Array without Magnetic Field

The polarization conversion of terahertz radiation by the periodic array of graphene microribbons located at the surface of a high-refractiveindex dielectric substrate (prizm) is studied theoretically. Polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that giant (up to total) polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons.