Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Kuksin A. V., Gerasimenko A. Y., Shaman Y. P., Shamanaev A. A., Sysa A. V., Glukhova O. E. Effect of functionalization on the electrical properties of laser-structured hybrid carbon nanomaterials. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 4, pp. 307-315. DOI: 10.18500/1817-3020-2023-23-4-307-315, EDN: TZUMAT

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
25.12.2023
Full text:
(downloads: 104)
Language: 
Russian
Article type: 
Article
UDC: 
538.9
EDN: 
TZUMAT

Effect of functionalization on the electrical properties of laser-structured hybrid carbon nanomaterials

Autors: 
Kuksin Artem V., National Research University «Moscow Institute of Electronic Technology»
Gerasimenko Aleksander Yur'evich, National Research University «Moscow Institute of Electronic Technology»
Shaman Yury P., Scientific-Manufacturing Complex “Technological Centre”
Shamanaev Artemiy A., Scientific-Manufacturing Complex “Technological Centre”
Sysa Artem Vladimirovich, Scientific-Manufacturing Complex “Technological Centre”
Glukhova Olga Evgen'evna, Saratov State University
Abstract: 

Background and Objectives: An urgent task of field emission electronics is to reduce the operating voltage in order to obtain an emission current of a given density. To solve this problem, an emitter with a low work function is needed. Carbon nanomaterials are promising candidates for the role of field emitters; however, to reduce the work function of electrons from these nanomaterials, it is necessary to functionalize their surface with other nanostructures with a low work function. In this work, we experimentally studied the effect of functionalization of lanthanum hexaboride (LaB6) with nanoparticles on the electrical properties of nanomaterials based on an array of carbon nanotubes (CNTs). Materials and Methods: Using the developed technology of laser exposure, a hybrid nanomaterial was created based on a vertical array of CNTs functionalized with LaB6 nanoparticles. Pulsed laser action on an array of CNTs with an energy density of 0.15 J/cm2 made it possible to shorten, align, and structure the upper ends of the nanotubes perpendicular to the substrate. Results: The effect of the formation of a hybrid nanostructure by binding LaB6 nanoparticles to the CNT surface has been experimentally established. Registration of the emission current-voltage characteristics of hybrid nanomaterials has shown a decrease in the total work function of the hybrid nanomaterial by 78% after functionalization with LaB6 nanoparticles. Conclusion: Based on the results obtained, it is predicted that CNT+LaB6 hybrid nanostructures have a great potential for application as nanomaterials for field emission electronics.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 21-19-00226).
Reference: 
  1. Xu J., Lin C., Shi Y., Li Y., Zhao X., Zhang X., Zhang J. Optimization of a Field Emission Electron Source Based on Nano-Vacuum Channel Structures. Micromachines, 2022, vol. 13, iss. 8, pp. 1274. https://doi.org/10.3390/mi13081274
  2. McCarthy P. T., Reifenberger R. G., Fisher T. S. Thermionic and photo-excited electron emission for energy-conversion processes. Front. Energy Res., 2014, vol. 2, pp. 54. https://doi.org/10.3389/fenrg.2014.00054
  3. Nirantar S., Ahmed T., Bhaskaran M., Han J., Walia S., Sriram S. Electron Emission Devices for Energy-Efficient Systems. Adv. Intell. Syst., 2019, vol. 1, iss. 4, pp. 1900039. https://doi.org/10.1002/aisy.201900039
  4. Lange S. L., Noori N. K., Kristensen T. M. B., Steenberg K., Jepsen P. U. Ultrafast THz-driven electron emission from metal metasurfaces. J. Appl. Phys., 2020, vol. 128, iss. 7, pp. 070901. https://doi.org/10.1063/1.5142590
  5. Iwamatsu T., Tsutsui A., Yamaji H. Atmospheric operation of original electron emission device and generation of reactive species. Appl. Phys. Lett., 2019, vol. 114, iss. 5, pp. 053511. https://doi.org/10.1063/1.5077062
  6. Yater J. E. Secondary electron emission and vacuum electronics. J. Appl. Phys., 2023, vol. 133, iss.5, pp. 050901. https://doi.org/10.1063/5.0130972
  7. Filip V., Filip L. D., Wong H. Review on peculiar issues of field emission in vacuum nanoelectronic devices. Solid-State Electronics, 2017, vol. 138, pp. 3–15. https://doi.org/10.1016/j.sse.2017.09.010
  8. Trucchi D. M., Melosh N. A. Electron-emission materials: Advances, applications, and models. MRS Bull., 2017, vol. 42, iss. 7, pp. 488–492. https://doi.org/10.1557/mrs.2017.142
  9. Dwivedi N., Dhand C., Carey J. D., Anderson E. C., Kumar R., Srivastava A. K., Malik H. K., Saifullah M. S. M., Kumar S., Lakshminarayanan R., Ramakrishna S., Bhatia C. S., Danner A. The rise of carbon materials for field emission. J. Mater. Chem. C, 2021, vol. 9, iss. 8, pp. 2620–2659. https://doi.org/10.1039/D0TC05873D
  10. Giubileo F., Di Bartolomeo A., Iemmo L., Luongo G., Urban F. Field Emission from Carbon Nanostructures. Appl. Sci., 2018, vol. 8, iss. 4, pp. 526. https://doi.org/10.3390/app8040526
  11. Gao Y., Okada S. Field induced electron emission from graphene nanostructures. Nano Ex., 2022, vol. 3, iss. 3, pp. 034001. https://doi.org/10.1088/2632-959X/ac8822
  12. Ji Q., Wang B., Zheng Y., Zeng F., Lu B. Field emission performance of bulk graphene. Diamond and Related Materials, 2022, vol. 124, pp. 108940. https://doi.org/10.1016/j.diamond.2022.108940
  13. Yu W., Hu H., Zhang D., Huang H., Guo T. Improved field emission properties of CuO nanowire arrays by coating of graphene oxide layers. J. Vac. Sci. Technol. B, 2015, vol. 34, iss. 2, pp. 02G102. https://doi.org/10.1116/1.4938485
  14. Sun L., Zhou X., Lin Z., Guo T., Zhang Y., Zeng Y. Effects of ZnO Quantum Dots Decoration on the Field Emission Behavior of Graphene. ACS Appl. Mater. Interfaces, 2016, vol. 8, iss. 46, pp. 31856–31862. https://doi.org/10.1021/acsami.6b10454
  15. Rout C. S., Joshi P. D., Kashid R. V., Joag D. S., More M. A., Simbeck A. J., Washington M., Nayak S. K., Late D. J. Enhanced field emission properties of doped graphene nanosheets with layered SnS2. Appl. Phys. Lett., 2014, vol. 105, iss. 4, pp. 043109. https://doi.org/2014ApPhL.105d3109R
  16. Liu J., Zeng B., Wu Z., Sun H. Enhanced Field Electron Emission of Graphene Sheets by CsI Coating after Electrophoretic Deposition. ACS Appl. Mater. Interfaces., 2012, vol. 4, iss. 3, pp. 1219–1224. https://doi.org/10.1021/am201306c
  17. Hong X. D., Liang D., Wu P. Z., Zheng H. R. Facile synthesis and enhanced field emission properties of Cu nanoparticles decorated graphene-based emitters. Diamond and Related Materials, 2016, vol. 69, pp. 61–67. https://doi.org/0.1016/j.diamond.2016.07.011
  18. Baby T. T., Ramaprabhu S. Experimental study on the field emission properties of metal oxide nanoparticle–decorated graphene. J. Appl. Phys., 2012, vol. 111, iss. 3, pp. 034311. https://doi.org/10.1063/1.3681376
  19. Parakhin G. A., Pobbubniy R. S., Nesterenko A. N., Sinitsin A. P. Low-current Cathode with a BaO Based Thermoemitter. Procedia Eng., 2017, vol. 185, iss. 80, pp. 80–84. https://doi.org/10.1016/j.proeng.2017.03.295
  20. Tang S., Tang J., Chiu T. W., Hayami W., Uzuhashi J., Ohkubo T., Uesugi F., Takeguchi M., Mitome M., Qin L. C. A HfC nanowire point electron source with oxycarbide surface of lower work function for highbrightness and stable field-emission. Nano Res., 2020, vol. 13, pp. 1620–1626. https://doi.org/10.1007/s12274-020-2782-0
  21. Kaur G., Kumar R., Lahiri I. Field electron emission from protruded GO and rGO sheets on CuO and Cu nanorods. Phys. E : Low-Dimens. Syst. Nanostructures, 2019, vol. 112, pp. 10–18. https://doi.org/10.1016/J.Physe.2019.03.017
  22. Zhang H., Jimbo Y., Niwata A., Ikeda A., Yasuhara A., Ovidiu C., Kimoto K., Kasaya T., Miyazaki H. T., Tsujii N., Wang H., Yamauchi Y., Fujita D., Kitamura S. I., Manabe H. High-endurance micro-engineered LaB6 nanowire electron source for high-resolution electron microscopy. Nat. Nanotechnol., 2022, vol. 17, iss. 1, pp. 21–26. https://doi.org/10.1038/s41565-021-00999-w
  23. Wang X., Lin Z., Qi K., Chen Z., Wang Z., Jiang Y. Field emission characteristics of lanthanum hexaboride coated silicon field emitters. J. Phys. D: Appl. Phys., 2007, vol. 40, no. 16, pp. 4775–4778. https://doi.org/10.1088/0022-3727/40/16/006
  24. Tang S., Tang J., Uzuhashi J., Ohkubo T., Hayami W., Yuan J., Takeguchi M., Mitome M., Qin L. C. A stable LaB6 nanoneedle field-emission point electron source. Nanoscale Adv., 2021, vol. 3, iss. 10, pp. 2787–2792. https://doi.org/10.1039/D1NA00167A
  25. Tang S., Tang J., Okunishi E., Ninota Y., Yasuhara A., Uzuhashi J., Ohkubo T., Takeguchi M., Yuan J., Qin L. C. A stable LaB6 nanoneedle field-emission electron source for atomic resolution imaging with a transmission electron microscop. Mater. Today, 2022, vol. 57, pp. 35–42. https://doi.org/10.1016/j.mattod.2022.06.003
  26. Gushenets V., Bugaev A., Oks E. Boron vacuum-arc ion source with LaB6 cathode. Rev Sci Instrum., 2019, vol. 90, iss. 11, pp. 113309. https://doi.org/10.1063/1.5127096
  27. Wang X., Lv Y., Wang H., Qi K., Cao G. The effect of oxygen plasma treatment on the field emission properties of lanthanum hexaboride tip emitter. Mater. Res. Express, 2019, vol. 6, no. 4, pp. 045015. https://doi.org/10.1088/2053-1591/aafb40
  28. Yamaguchi H., Yusa R., Wang G., Pettes M. T., Liu F., Tsuda Y., Yoshigoe A., Abukawa T., Moody N. A., Ogawa S. Work function lowering of LaB6 by monolayer hexagonal boron nitride coating for improved photo- and thermionic-cathodes. Appl. Phys. Lett., 2023, vol. 122, iss. 14, pp. 141901. https://doi.org/10.1063/5.0142591
  29. Wang X., Deng J., Lei L., Qi K., Cao G., Zha L. Enhanced field emission performance of lanthanum hexaboride coated on graphene film. Mater. Res. Express, 2018, vol. 5, no. 12, pp. 126403. https://doi.org/10.1088/2053-1591/aae0c6
  30. Rezaeifar F., Lin Q., Chen X., Mattox T. M., Garg A., Clough A., Poudel N., Blankemeier L., Sarkar D., Cronin S. B., Kapadia R. Independent tuning of work function and field enhancement factor in hybrid lanthanum hexaboride-graphene-silicon field emitters. J. Vac. Sci. Technol. B, 2017, vol. 35, iss. 6, pp. 062202. https://doi.org/10.1116/1.5001324
  31. Potrivitu G., Joussot R., Mazouffre S. Anode position influence on discharge modes of a LaB6 cathode in diode configuration. Vacuum, 2018, vol. 151, pp. 122–132. https://doi.org/10.1016/j.vacuum.2018.02.010
  32. Morassutto M., Tiggelaar R. M., Smithers M. A., Gardeniers J. G. E. Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition. Mater. Today Commun., 2016, vol. 7, pp. 89–100. https://doi.org/10.1016/j.mtcomm.2016.04.007
  33. Lim Y. D., Kong Q., Wang S., Tan C. W., Tay B. K., Aditya S. Enhanced field emission properties of carbon nanotube films using densification technique. Appl. Surf. Sci., 2019, vol. 477, pp. 211–219. https://doi.org/10.1016/j.apsusС.~2017.11.005
  34. Sreekanth M., Srivastava P., Ghosh S. Highly enhanced field emission from copper oxide nanoparticle decorated vertically aligned carbon nanotubes: Role of interfacial electronic structure. Appl. Surf. Sci., 2020, vol. 508, pp. 145215. https://doi.org/10.1016/j.apsusc.2019.145215
  35. Shin D. H., Yun K. N., Jeon S. G., Kim J. I., Saito Y., Milne W. I., Lee C. J. High performance field emission of carbon nanotube film emitters with a triangular shape. Carbon, 2015, vol. 89, pp. 404–410. https://doi.org/10.1016/j.carbon.2015.03.041
  36. Sreekanth M., Ghosh S., Biswas P., Kumar S., Srivastava P. Improved field emission from indium decorated multi-walled carbon nanotubes. Appl. Surf. Sci., 2016, vol. 383, pp. 84–89. https://doi.org/10.1016/j.apsusc.2016.04.170
  37. Gerasimenko A. Y., Kuksin A. V., Shaman Y. P., Kitsyuk E. P., Fedorova Y. O., Murashko D. T., Shamanaev A. A., Eganova E. M., Sysa A. V., Savelyev M. S., Telyshev D. V., Pavlov A. A., Glukhova O. E. Hybrid Carbon Nanotubes–Graphene Nanostructures: Modeling, Formation, Characterization. Nanomaterials, 2022, vol. 12, iss. 16, pp. 2812. https://doi.org/10.3390/nano12162812
  38. Ulisse G., Brunetti F., Di Carlo A., Orlanducci S., Tamburri E., Guglielmotti V., Marrani M., Terranova M. L. Carbon nanotubes field emission enhancement using a laser post treatment. J. Vac. Sci. Technol. B, 2015, vol. 33, iss. 2, pp. 022203. https://doi.org/10.1116/1.4913285
  39. Gerasimenko A. Yu., Kitsyuk E. P., Kuksin A. V., Ryazanov R. M., Savitskiy A. I., Savelyev M. S., Pavlov A. A. Influence of laser structuring and barium nitrate treatment on morphology and electrophysical characteristics of vertically aligned carbon nanotube arrays. Diamond and Related Materials, 2019, vol. 96, pp. 104–111. https://doi.org/10.1016/j.diamond.2019.04.035
Received: 
28.06.2023
Accepted: 
25.08.2023
Published: 
25.12.2023