Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Panferov A. D., Novikov N. A. Characteristics of induced radiation under the action of short high-frequency pulses on graphene. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 3, pp. 254-264. DOI: 10.18500/1817-3020-2023-23-3-254-264, EDN: NSZKPX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 133)
Article type: 

Characteristics of induced radiation under the action of short high-frequency pulses on graphene

Panferov Anatolii Dmitrievich, Saratov State University
Novikov Nikolay Andreevich, Saratov State University

Background and Objectives: The nonlinear effects of high-harmonic generation in various materials provide new tools for studying ultrafast electron dynamics and open up a possible way to create coherent light sources in currently inaccessible frequency ranges. Graphene is regarded as one of the most promising materials for these purposes. To describe nonlinear processes in it, it is necessary to be able to reproduce the change in the population of electronic states in the conduction band under the action of an intense external electric field and the effects observed in this case. Materials and Methods: The work is devoted to demonstrating the applicability of the quantum kinetic equation method and the software solution developed on its basis for these purposes. The implemented approach provides an accurate reproduction of the response of the electronic subsystem of the material to an external pulse action in a wide range of frequencies, durations and strength of the field. The characteristics of the plasma field accessible to an external observer are reproduced and analyzed. The method allows considering various initial states of the model. This can be a vacuum state with a complete absence of electrons in the conduction band or an equilibrium distribution of carriers at a given temperature. The use of the relaxation time approximation in the kinetic equation makes it possible to estimate the influence of dissipative processes on the behavior of the model. Results: The demonstration was carried out on the example of modeling the observed effects of a short infrared pulse on a graphene monolayer and comparing the results with experimental data. The presented results have been obtained for a version of the kinetic equation defined in the massless fermion approximation. The reproduction of the high-harmonic generation effect has been confirmed. The effect of the electron-hole plasma relaxation on the simulated results has been demonstrated. The processes of intraband carrier dynamics and interband transitions under the influence of an external electric field have been singled out and available for separate analysis. The dependence of the high-harmonic generation effect on the type of polarization of the external pulse field has been demonstrated. Conclusion: The presented results have been the applicability of the developed method and its software implementation for modeling the generation of higher harmonics under the conditions of nonlinear interaction of graphene with external high-frequency fields. The method works in a wide range of sample and external field parameters. 

This work was supported by the Russian Science Foundation (project No. 23-21-00047), https://rscf.ru/project/23-21-00047/. The authors are grateful to Stanislav A. Smolyansky for the constructive discussion of the model and the results.
  1. Meng F., Walla F., Kovalev S., Deinert J., Ilyakov I., Chen M., Ponomaryov A., Pavlov S. G., Hubers H., Abrosimov N. V., Jungemann Ch., Roskos H. G., Thomson M. D. Higher-harmonic generation in boron-doped silicon from band carriers and bound-dopant photoionization. Arxiv.org:2303.01564. https://doi.org/10.48550/arXiv.2303.01564
  2. Kim D., Lee Y., Chacón A., Kim D. E. Effect of interlayer coupling and symmetry on high-order harmonic generation from monolayer and bilayer hexagonal boron nitride. Symmetr, 2022, vol. 14, article no. 84. https://doi.org/10.3390/sym14010084
  3. Calafell A. I., Rozema L. A., Iranzo D. A., Trenti T., Jenke Ph. K., Cox J. D., Kumar A., Bieliaiev H., Nanot S., Peng Ch., Efetov D. K., Hong J.-Y., Kong J., Englund D. R., Abajo F. J. G., Koppens F. H. L., Walther P. Giant enhancement of third-harmonic generation in graphene–metal heterostructures. Nature Nanotechnology, 2021, vol. 16, pp. 318–324. https://doi.org/10.1038/s41565-020-00808-w
  4. Cha S., Kim M., Kim Y., Choi Sh., Kang S., Kim H., Yoon S., Moon G., Kim T., Lee Y. W., Cho G. Y., Park M. J., Kim Ch.-J., Kim B. J., Lee J. D., Jo M.-H., Kim J. Gate-tunable quantum pathways of high harmonic generation in graphene. Nature Communication, 2022, vol. 13, article no. 6630. https://doi.org/10.1038/s41467-022-34337-y
  5. Yoshikawa N., Tamaya T., Tanaka K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science, 2017, vol. 356, pp. 736–738. https://doi.org/10.1126/science.aam8861
  6. Sato S. A., Hirori H., Sanari Y., Kanemitsu Y., Rubio A. High-order harmonic generation in graphene: Nonlinear coupling of intraband and interband transitions. Phys. Rev. B, 2021, vol. 103, article no. L041408. https://doi.org/10.1103/PhysRevB.103.L041408
  7. Mao W., Rubio A., Sato Sh. A. Terahertz-induced high-order harmonic generation and nonlinear charge transport in graphene. Phys. Rev. B, 2022, vol. 106, article no. 024313. https://doi.org/10.1103/PhysRevB.106.024313
  8. Zurrón Ó., Picón A., Plaja L. Theory of high-order harmonic generation for gapless graphene. New J. Phys., 2018, vol. 20, article no. 053033. https://doi.org/10.1088/1367-2630/aabec7
  9. Chen Z.-Y., Qin R. Circularly polarized extreme ultraviolet high harmonic generation in grapheme. Opt. Express, 2019, vol. 27, pp. 3761–3770. https://doi.org/10.1364/OE.27.003761
  10. Zhang Y., Li L., Li J., Huang T., Lan P., Lu P. Orientation dependence of high-order harmonic generation in grapheme. Phys. Rev. A, 2021, vol. 104, article no. 033110. https://doi.org/10.1103/PhysRevA.104.033110
  11. Panferov A., Smolyansky S., Blaschke D., Gevorgyan N. Comparing two different descriptions of the I–V characteristic of graphene: Theory and experiment. EPJ Web Conf., 2019, vol. 204, article no. 06008. https://doi.org/10.1051/epjconf/201920406008
  12. Smolyansky S. A., Panferov A. D., Blaschke D. B., Gevorgyan N. T. Nonperturbative kinetic description of electronhole excitations in graphene in a time dependent electric field of arbitrary polarization. Particles, 2019, vol. 2, pp. 208–230. https://doi.org/10.3390/particles2020015
  13. Smolyansky S. A., Blaschke D. B., Dmitriev V. V., Panferov A. D., Gevorgyan N. T. Kinetic equation approach to graphene in strong external fields. Particles, 2020, vol. 3, pp. 456–476. https://doi.org/10.3390/particles3020032
  14. Grib A. A., Mamaev S. G., Mostepanenko V. M. Vakuumnye kvantovye effekty v sil’nykh polyakh [Vacuum quantum effects in strong fields]. Moscow, Energoatomizdat, 1988. 288 p. (in Russian).
  15. Bialynicky-Birula I., Gornicki P., Rafelski J. Phase space structure of the Dirac vacuum. Phys. Rev. D, 1991, vol. 44, pp. 1825–1835. https://doi.org/10.1103/PhysRevD.44.1825
  16. Schmidt S. M., Blaschke D., Röpke G., Smolyansky S. A., Prozorkevich A. V., Toneev V. D. A Quantum kinetic equation for particle production in the Schwinger mechanism. Int. J. Mod. Phys. E, 1998, vol. 7, pp. 709–718. https://doi.org/10.1142/S0218301398000403
  17. Tarakanov A. V., Reichel A. V., Smolyansky S. A., Vinnik D. M., Schmidt S. M. Kinetics of vacuum pair creation in strong electromagnetic fields. In: Bonitz M., Semkat D., eds. Progress in Nonequilibrium Green’s Functions. Proceedings of the Conference. World Scientific Publishing Co. Pte. Ltd., 2002, pp. 393–400. https://doi.org/10.1142/9789812705129_0035
  18. Blaschke D. B., Prozorkevich A. V., Röpke G., Roberts C. D., Schmidt S. M., Shkirmanov D. S., Smolyansky S. A. Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED. Eur. Phys. J. D, 2009, vol. 55, pp. 341–358. https://doi.org/10.1140/epjd/e2009-00156-y
  19. Blaschke D., Smolyansky S. A., Panferov A. D., Juchnowski L. Particle production in strong time-dependent fields. In: Proceedings of the Helmholtz International Summer School on Quantum Field Theory at the Limits: From Strong Fields to Heavy Quarks. Dubna, Russia, 2016, pp. 1–23. http://dx.doi.org/10.3204/DESY-PROC-2016-04/Blaschke
  20. Gavrilov S. P., Gitman D. M., Dmitriev V. V., Panferov A. D., Smolyansky S. A. Radiation Problems Accompanying Carrier Production by an Electric Field in the Graphene. Universe, 2020, vol. 6, article no. 205. https://doi.org/10.3390/universe6110205
  21. Tarakanov A. V., Reichel A. V., Smolyansky S. A., Vinnik D. V., Schmidt S. M. Kinetics of vacuum pair creation in strong electromagnetic fields. In: Proceedings of the conference progress in nonequilibrium Green’s functions. Dresden, Germany, 2002, pp. 393–400. https://doi.org/10.1142/9789812705129_0035
  22. Martin P. C., Schwinger J. Theory of many-particle systems. I. Phys. Rev., 1959, vol. 115, pp. 1342–1373. https://doi.org/10.1103/PhysRev.115.1342
  23. Ahiezer A. I., Peletminskij S. V. Metody statisticheskoj fiziki [Methods of statistical physics]. Moscow, Nauka, 1977. 367 p. (in Russian).
  24. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 2005, vol. 438, pp. 197–200. https://doi.org/10.1038/nature04233
  25. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of grapheme. Rev. Mod. Phys., 2009, vol. 81, pp. 109–162. https://doi.org/10.1103/RevModPhys.81.109
  26. Abbott T. A., Griffiths D. J. Acceleration without radiation. Am. J. Phys., 1985, vol. 53, pp. 1203–1211. https://doi.org/10.1119/1.14084
  27. Cheng J. L., Vermeulen N., Sipe J. E. Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature. Phys. Rev. B, 2015, vol. 91, article no. 235320. https://doi.org/10.1103/PhysRevB.91.235320
  28. Hafez H. A., Kovalev S., Deinert J.-Ch., Mics Z., Green B., Awari N., Min Chen M., Germanskiy S., Lehnert U., Teichert J., Wang Z., Tielrooij K.-J., Liu Zh., Chen Z., Narita A., Müllen K., Bonn M., Gensch M., Turchinovich D. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature, 2018, vol. 561, pp. 507–511. https://doi.org/10.1038/s41586-018-0508-1
  29. Das Sarma S., Adam S., Hwang E. H., Rossi E. Electronic transport in two-dimensional grapheme. Rev. Mod. Phys., 2011, vol. 83, pp. 407–470. https://doi.org/10.1103/RevModPhys.83.407