Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Morozov M. I., Moiseenko I. M., Popov V. V. Linear Model of Surface Terahertz Plasmons Amplification in Two Parallel Graphene Sheets. Izvestiya of Sarat. Univ. Physics. , 2019, vol. 19, iss. 1, pp. 28-33. DOI: 10.18500/1817-3020-2019-19-1-28-33

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 52)
Language: 
Russian
UDC: 
621.375.026

Linear Model of Surface Terahertz Plasmons Amplification in Two Parallel Graphene Sheets

Autors: 
Morozov Mikhail Iur'evich, Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Moiseenko Ilya Mikhailovich, Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Popov Vyacheslav Valentinovich, Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
Abstract: 

Amplification of terahertz plasmons in a pair of parallel active graphene monolayers is studied theoretically. It is shown that the antisymmetric mode increment of plasmons in the two parallel graphene monolayers may be several times greater than that in a single graphene layer due to deceleration of the antisymmetric plasmon mode as compared to the plasmon mode in a single graphene monolayer. The symmetric mode increment of plasmons in the two parallel graphene monolayers can be two times greater in magnitude than that in a single graphene layer due to constructive interference of the plasmon fields in the structure with two parallel graphene monolayers. Background and Objectives: Graphene, being a natural two-dimensional material with zero band-gap, appears to be a perfect platform for terahertz (THz) radiation amplification. Justification of the possibility of possessing the negative conductivity of graphene at THz frequencies resulted in the proposals of THz graphene lasers and plasmonic amplifiers which may be used for signal processing in THz integrated nanocircuits in the subwavelength regime. The double-layer graphene structure consists of two parallel graphene monolayers with a narrow dielectric gap (barrier layer) between them. Electromagnetic fields of plasmons propagating in these layers interact with each other giving rise to a single unified plasmon in the pair of parallel graphene monolayers surrounded by dielectric claddings. In this paper, we study the gain of THz plasmons in the double-layer graphene. Materials and Methods: The plasmon gain is calculated from the dispersion relation obtained in the strict electrodynamic approach. Results: It is shown that the antisymmetric mode increment of plasmons in the double-layer graphene may be several times greater than that in a single graphene layer, the symmetric mode increment of plasmons in the double-layer graphene may be two times greater in magnitude than that in a single graphene layer. Conclusion: In conclusion, we have studied the gain of the symmetric and antisymmetric plasmon modes in the double-layer graphene heterostructure. It is shown that the antisymmetric mode increment of plasmons in the doublelayer graphene may be several times greater than that in a single graphene layer, the symmetric mode increment of plasmons in the double-layer graphene may be two times greater in magnitude than that in a single graphene layer. Amplified plasmons can be used in low-loss interconnects and active elements in THz plasmonic graphene nanocircuits.

Reference: 

1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, vol. 306, pp. 666‒669. DOI: https://doi.org/10.1126/science.1102896

2. Novoselov K. S., Fal′ko V. I., Colombo L., Gellert P. R., Schwab M. G., Kim K. A roadmap for graphene. Nature, 2012, vol. 490, pp. 192. DOI: https://doi.org/10.1038/nature11458

3. Ryzhii V., Ryzhii M., Otsuji T. Negative dynamic conductivity of graphene with optical pumping. J. Appl. Phys., 2007, vol. 101, 083114. DOI: https://doi.org/10.1063/1.2717566

4. Aleshkin V. Ya., Dubinov A. A., Ryzhii V. Terahertz laser based on optically pumped graphene: model and feasibility of realization. Pisma v JETF, 2009, vol. 89, pp. 70‒74. DOI: https://doi.org/10.1134/S0021364009020039

5. Davoyan A. R., Morozov M. Yu., Popov V.V., Satou A., Otsuji T. Graphene surface emitting terahertz laser: Diffusion pumping concept. Appl. Phys. Lett., 2013, vol. 103, 251102. DOI: https://doi.org/10.1063/1.4850522

6. Dubinov A. A., Aleshkin V. Ya., Mitin V., Otsuji T., Ryzhii V. Terahertz surface plasmons in optically pumped graphene structures. J. Phys.: Condens. Matter., 2011, vol. 23, 145302. DOI: https://doi.org/10.1088/0953-8984/23/14/145302

7. Popov V. V., Polischuk O. V., Davoyan A. R., Ryzhii V., Otsuji T., Shur M. S. Plasmonic terahertz lasing in an array of graphene nanocavities. Phys. Rev. B, 2012, vol. 86, 195437. DOI: https://doi.org/10.1103/PhysRevB.86.195437

8. Morozov M. Yu., Davoyan A. R., Moiseenko I. M., Satou A., Otsuji T., Popov V. V. Active guiding of Dirac plasmons in graphene. Appl. Phys. Lett., 2015, vol. 106, 061105. DOI: https://doi.org/10.1063/1.4907644

9. Satou A., Koseki Y., Ryzhii V., Vyurkov V., Otsuji T. Damping mechanism of terahertz plasmons in graphene on heavily doped substrate. J. Appl. Phys., 2014, vol. 115, 104501. DOI: https://doi.org/10.1063/1.4867971

10. Gan C. H., Chu H. S., Li E. P. Synthesis of highly confi ned surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B, 2012, vol. 85, 125431. DOI: https://doi.org/10.1103/PhysRevB.85.125431

11. Britnell L., Gorbachev R., Jalil R., Belle B., Schedin F., Mishchenko A., Georgiou T., Katsnelson M., Eaves L., Morozov S., Peres N., Leist J., Geim A., Novoselov K., Ponomarenko L. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012, vol. 335, pp. 947‒950. DOI: https://doi.org/10.1126/science.1218461

12. Liu M., Yin X., Zhang X. Double-Layer Graphene Optical Modulator. Nano Letters, 2012, vol. 12, pp. 1482‒1485. DOI: https://doi.org/10.1021/nl204202k

13. Andersen D. R. Graphene-based long-wave infrared TM surface plasmon modulator. J. Opt. Soc. Am. B, 2010, vol. 27, pp. 818‒823. DOI: https://doi.org/10.1364/JOSAB.27.000818

14. Svintsov D., Vyurkov V., Ryzhii V., Otsuji T. Voltagecontrolled surface plasmon-polaritons in double graphene layer structures Journal of Appl. Phys., 2013, vol. 113, 053701. DOI: https://aip.scitation.org/doi/10.1063/1.4789818

15. Buslaev P. I., Iorsh I. V., Shadrivov I. V., Belov P. A., Kivshar Yu. S. Plasmons in waveguide structures formed by two graphene layers. JETP Letters, 2013, vol. 97, pp. 535–539.

16. Wagon S. Mathematica® in Action Problem Solving Through Visualization and Computation. Springer, 2010. 591 p.

Краткое содержание:
(downloads: 43)