Izvestiya of Saratov University.
ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


dynamic light scattering

Dynamic Light Scattering Method in Studies of Silica and Gold Nanoparticles

Background and Objectives: It is well known, that uncritical use of the dynamic light scattering (DLS) method may give unacceptable results for the volume or number distributions of particles as compared with transmission electron microscopy (TEM) data. The purpose of this study is to investigate application of the DLS method for determining the size of colloidal silica and gold nanoparticles and to compare results of three methods: DLS, TEM, and absorption spectroscopy (see next paper).

Application of Dynamic Light Scattering and Absorption Spectroscopy to Studies of Systems with Colloidal Gold Nanoparticles + DNA

Background and Objectives: The dynamic light scattering (DLS) method is widely used to evaluate the particle size distributions. However, DLS is not free of serious drawbacks. For a fast approximate estimation of the average size of colloidal gold nanoparticles (AuNPs) within the range of 15–100 nm reasonable results can be obtained with using the absorption spectroscopy. We discuss the advantages and drawbacks of DLS, transmission electron microscope (TEM), and absorption spectroscopy in gold nanoparticle sizing.

Investigation of the Interaction and Dynamics of Collagen and Collagenase Molecules in Solutions by Dynamic Light Scattering

Background and Objectives: Bacterial collagenase from Closrtidium histolyticum is widely used as a clinical tool in the nonsurgical treatment of Dupuytren’s disease in eye’s disorders treatment, for enzymatic debridement, for accelerated resorption of catgut sutures. Collagenase main feature is its ability to digest key protein of the animal extracellular matrix – collagen. Dynamic Light Scattering (DLS) technique allows for investigation of collagen and collagenase solutions in conditions close to physiological.