Cite this article as:

Khlebtsov B. N., Pylaev T. Е., Khanadeev V. А., Khlebtsov N. G. Application of Dynamic Light Scattering and Absorption Spectroscopy to Studies of Systems with Colloidal Gold Nanoparticles + DNA . Izvestiya of Saratov University. New series. Series Physics, 2017, vol. 17, iss. 3, pp. 136-149. DOI: https://doi.org/10.18500/1817-3020-2017-17-3-136-149


UDC: 
535.36+541.182.535.36
Language: 
Russian

Application of Dynamic Light Scattering and Absorption Spectroscopy to Studies of Systems with Colloidal Gold Nanoparticles + DNA

Abstract

Background and Objectives: The dynamic light scattering (DLS) method is widely used to evaluate the particle size distributions. However, DLS is not free of serious drawbacks. For a fast approximate estimation of the average size of colloidal gold nanoparticles (AuNPs) within the range of 15–100 nm reasonable results can be obtained with using the absorption spectroscopy. We discuss the advantages and drawbacks of DLS, transmission electron microscope (TEM), and absorption spectroscopy in gold nanoparticle sizing. In addition, we consider the application DLS and absorption spectroscopy to detection of ssDNA oligonucleotides and mismatches in their sequences with using AuNPs. The method principle is as follows: the addition of probe and target ssDNA to CTAB-coated AuNPs results in particle aggregation, whereas no aggregation occurs after addition of probe and nontarget DNA sequences.

Materials and Methods: 16-nm and 60-nm AuNPs with negative charges were synthesized by the Frens method. Positively charged AuNPs were obtained by functionalization of with CTAB. As ssDNA models, we used 21-mer oligonucleotides from the human immunodeficiency virus HIV-1 and a 23-mer ssDNAs from the Bacillus anthracis genes. A Zetasizer Nano ZS instrument (Malvern, UK) was used for DLS measurements. A Libra-120 transmission electron microscope (Carl Zeiss, Jena, Germany) and a Specord BS 250 spectrophotometer (Analytik Jena, Germany) were used for TEM and spectroscopic measurements at the Simbioz Center for the Collective Use of Research Equipment in the Field of Physical-Chemical Biology and Nanobiotechnology at the IBPPM RAS.

Results: For a fast estimation of the average size of AuNPs in the range of 15–100 nm, the absorption spectroscopy gives reasonable sizes derived from presented calibrations. For AuNPs with diameters in the range of 3–15 nm, the sizing calibration curve is based on the measurement of the ratio between the absorption intensities at the plasmon resonance wavelength and at 450 nm. We also have demonstrated the application of absorption spectroscopy and DLS methods to estimation of ssDNA concentration.

Conclusion: The advantages and drawbacks of three methods (TEM, DLS, and absorption spectroscopy) in nanoparticle sizing have been discussed with a special attention to AuNPs. For spherical particles, the z-average DLS size of AuNPs is in a reasonable agreement with TEM data, whereas the size distribution obtained with DLS is typically much broader than that derived from TEM histograms. DLS is shown to be the only method suitable for nonperturbative and sensitive diagnostics of relatively slow aggregation processes with characteristic times about 1 min. The detection limits of absorption spectroscopy and DLS for ssDNA detection are 100 and 10 pM, respectively.

References

1. Berne B. J., Pecora R. Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Mineola, New York, Dover Publ., 2000. 384 p.

2. Roebben G., Ramirez-Garcia S., Hackley V. A., Roesslein M., Klaessig F., Kestens V., Lynch I., Garner C. M., Rawle A., Elder A., Colvin V. L., Kreyling W., Krug H. F., Lewicka, Z. A., McNeil S., Nel A., Patri A., Wick P., Wiesner M., Xia T., Oberdörster G., Dawson K. A. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J. Nanopart. Res., 2011, vol. 13, pp. 2675–2687. 

3. Speed D., Westerhoff P., Sierra-Alvarez R., Draper R., Pantano P., Aravamudhan S., Chen K. L., Hristovski K., Herckes P., Bi X., Yang Y., Zeng C., Otero-Gonzalez L., Mikoryak C., Wilson B. A., Kosaraju K., Tarannum M., Crawford S., Yi P., Liu X., Babu S. V., Moinpour M., Ranville J., Montano M., Corredor C., Posner J., Shadman F. Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: Towards environmental health and safety assessments. Environ. Sci.:Nano, 2015, vol. 2, pp. 227–244.

4. Gambinossi F., Mylon S. E., Ferri J. K. Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv. Colloid. Interfac., 2015, vol. 222, pp. 332–349.

5. Zhu X., Li J., He H., Huang M., Zhang X., Wang S. Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens. Bioelectron., 2015, vol. 74, pp. 113–133.

6. Zheng T., Bott S., Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl. Mater. Inter., 2016, vol. 8, pp. 21585–21594.

7. Siddiqi K. S., Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J. Trace Elem. Med. Bio., 2017, vol. 40, pp. 10–23.

8. Dykman L. A., Bogatyrev V. A., Shchyogolev S. Yu., Khlebtsov N. G. Zolotye nanochastitsy: Sintez, svoistva, biomeditsinskoe primenenie [Gold Nanoparticles. Synthesis, Properties, and Biomedical Applications]. Moscow, Nauka Publ., 2008. 319 p. (in Russian).

9. Khlebtsov N . G., Dykman L. A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transfer., 2010, vol. 111, pp. 1–35.

10. Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev., 2012, vol. 41, pp. 2256–2282.

11. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Khlebtsov B. N., Englebienne P. A multilayer model for gold nanoparticle bioconjugates: application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method. Colloid J., 2003, vol. 65, pp. 622–635.

12. Jans H., Liu X., Austin L., Maes G., Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal. Chem., 2009, vol. 81, pp. 9425–9432.

13. Kalluri J. R., Arbneshi T., Khan S. A., Neely A., Candice P., Varisli B. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: Selective detection of arsenic in groundwater. Angew. Chem. Int. Ed., 2009, vol. 48, pp. 9668–9671.

14. Bell N. C., Minelli C., Shard A. G. Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement. Anal. Methods, 2013, vol. 5, pp. 4591–4601.

15. Alex S. A., Chakraborty D., Chandrasekaran N., Mukherjee A. A. comprehensive investigation of the differential interaction of human serum albumin with gold nanoparticles based on the variation in morphology and surface functionalization. RSC Adv., 2016, vol. 6, pp. 52683–52694.

16. Sutariya P. G., Pandya A., Lodha A., Menon S. K. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles. Talanta, 2016, vol. 147, pp. 590–597.

17. Liu X., Huo Q. A washing-free and amplifi cation-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering. J. Immunol. Methods, 2009, vol. 349, pp. 38–44.

18. Miao X., Zou S., Zhang H., Ling L. Highly sensitive carcinoembryonic antigen detection using Ag@Au coreshell nanoparticles and dynamic light scattering. Sensor. Actuat. B-Chem., 2014, vol. 191, pp. 396–400.

19. Witten K. G., Bretschneider J. C., Eckert T., Richtering W., Simon U. Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 1870–1875.

20. Dynamic Light Scattering (DLS), Malvern, UK. Available at: http://www.malvern.com/en/products/technology/dynamic-light-scattering/d... (accessed 04 January 2017).

21. Khlebtsov B. N., Khle btsov N. G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J., 2011, vol. 73, pp. 118–127.

22. Khlebtsov B. N., Khan a deev V. A., Pylaev T. E., Khlebtsov N. G. Dynamic Light Scattering Method in Studies of Silica and Gold Nanoparticles. Izv. Saratov Univ. (N.S.), Ser. Physics, 2017, vol. 17, iss. 2, pp. 71–84 (in Russian). DOI: https://doi.org/10.18500/1817-3020-2017-17-2-71-84

23. Khlebtsov B. N., Khanadeev V. A., Khlebtsov N. G. Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra. Langmuir, 2008, vol. 24, pp. 8964–8970.

24. Khanadeev V. A., Khlebtsov B. N., Khlebtsov N. G. Optical properties of gold nanoshells on monodisperse silica cores: experiment and simulations. J. Quant. Spectrosc. Radiat. Transfer., 2017, vol. 187, pp. 1–9.

25. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Melnikov A. G. Spectral extinction of colloidal gold and its biospecifi c conjugates. J. Colloid Interface Sci., 1996, vol. 180, pp. 436–445.

26. Haiss W., Thanh N. T. K., A veard J., Fernig D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem., 2007, vol. 79, pp. 4215–4221.

27. Njoki P. N., Lim I.-I. S., M ott D., Park H.-Y., Khan B., Mishra S., Sujakumar R., Luo J., Zhong C.-J. Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. B, 2007, vol. 111, pp. 14664–14669.

28. Khlebtsov N. G. Determination of size and concentration of gold nanoparticles from extinction spectra. Anal. Chem., 2008, vol. 80, pp. 6620–6625.

29. Pylaev T., Khanadeev V., Khleb tsov B., Dykman L., Bogatyrev V., Khlebtsov N. Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanorods and nanospheres: A comparative study. Nanotechnology, 2011, vol. 22, p. 285501 (11 pp).

30. Amendola V., Meneghetti M. Size evaluation of gold nanoparticles by UV-vis spectroscopy. J. Phys. Chem. C, 2009, vol. 113, pp. 4277–4285.

31. Chithrani B. D., Ghazani A. A., Chan W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, vol. 6, pp. 662–668.

32. Scaffardi L. B., Tocho J. O. Size dependence of refractive index of gold nanoparticles. Nanotechnology, 2006, vol. 17, p. 1309–1315.

33. Sancho-Parramon J. Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: a numerical study of size confi nement and interparticle interaction effects. Nanotechnology, 2009, vol. 20, p. 235706 (7 pp).

34. Maltsev V. P., Chernyshev A. V., Semyanov K. A., Soini E. Absolute real-time measurement of particle size distribution with the fl ying light-scattering indicatrix method. Appl. Opt., 1996, vol. 35, pp. 3275–3280.

35, pp. 3275–3280. 35. Shifrin K. S., Tonna G. Inverse problems related to light scattering in the atmosphere and ocean. Advances in Geophysics. New York, Academic Press, 1993, vol. 34, pp. 175–252.

36. Khlebtsov B. N., Bogatyrev V. A., Dykman L. A., Khlebtsov N. G. Spectra of resonance light scattering of gold nanoshells: effects of polydispersity and limited electron free path. Opt. Spectrosc., 2007, vol. 102, pp. 233–241.

37. Van der Zande B. M. I., Dhont Jan K. G., Bohmer Marcel R., Philipse A. P. Colloidal dispersions of gold rods characterized by dynamic light scattering and electrophoresis. Langmuir, 2000, vol. 16, pp. 459–464.

38. Rodríguez-Fernández J., Pérez-Juste J., Liz-Marzán L. M., Lang P. R. Dynamic light scattering of short Au rods with low aspect ratios. J. Phys. Chem. C, 2007, vol. 111, pp. 5020–5025.

39. Khlebtsov N. G. On the dependence of the light scattering intensity on the averaged size of polydisperse particles: comments on the paper by M. S. Dyuzheva et al. (Colloid J., 2002, vol. 64, no. 1, p. 39). Colloid J., 2003, vol. 65, no. 5, pp. 652–655.

40. Klyubin V. V., Bungov V. N. A comparison of results obtained by solution of the inverse problem of correlation spectroscopy with the use of the CONTIN and KLUB packages. Colloid J., 1998, vol. 60, pp. 313–318.

41. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Khlebtsov B. N., Krasnov Ya. M. Differential light scattering spectroscopy: a new approach to studies of colloidal gold nanosensors. J. Quant. Spectrosc. Radiat. Transfer., 2004, vol. 89, pp. 133–142.

42. Bogatyrev V. A., Dykman L. A., Khlebtsov B. N., Khlebtsov N. G. Measurement of mean size and evaluation of polydispersity of gold nanoparticles from spectra of optical absorption and scattering. Opt. Spectrosc., 2004, vol. 96, pp. 128–135.

43. Khlebtsov B. N., Zharov V. P., Melnikov A. G., Tuchin V. V., Khlebtsov N. G. Optical amplifi cation of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology, 2006, vol. 17, pp. 5167–5179.

44. He W., Huang C. Z., Li Y. F., Xie J. P., Yang R. G., Zhou P. F., Wang J. One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal. Chem., 2008, vol. 80, pp. 8424–8430.

45. Darbha G. K., Ra U. S., Singh A. K., Ray P. C. Gold nanorod based sensing of sequence specifi c HIV-1 virus DNA using hyper Rayleigh scattering spectroscopy. Chem. Eur. J., 2008, vol. 14, pp. 3896–3903.

46. Ma Z., Tian L., Wang T., Wang C. Optical DNA detection based on gold nanorods aggregation. Anal. Chim. Acta, 2010, vol. 673, pp. 179–184. 

Short text (in English): 
Full text (in Russian):