Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Khlebtsov B. N., Khanadeev V. A., Pylaev T. E., Khlebtsov N. G. Dynamic Light Scattering Method in Studies of Silica and Gold Nanoparticles. Izvestiya of Saratov University. Physics , 2017, vol. 17, iss. 2, pp. 71-84. DOI: 10.18500/1817-3020-2017-17-2-71-84

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 356)
Language: 
Russian
UDC: 
535.36+541.182.535.36

Dynamic Light Scattering Method in Studies of Silica and Gold Nanoparticles

Autors: 
Khlebtsov Boris Nikolaevich, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS)
Khanadeev Vitaly Andreevich, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS)
Pylaev Timofey Evgen'evich, Saratov State Medical University named after V. I. Razumovsky
Khlebtsov Nikolay Grigor'evich, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS)
Abstract: 

Background and Objectives: It is well known, that uncritical use of the dynamic light scattering (DLS) method may give unacceptable results for the volume or number distributions of particles as compared with transmission electron microscopy (TEM) data. The purpose of this study is to investigate application of the DLS method for determining the size of colloidal silica and gold nanoparticles and to compare results of three methods: DLS, TEM, and absorption spectroscopy (see next paper). Materials and Methods: Silica nanoparticles were synthesized by the Stöber method and by the L-arginine method. Gold nanoparticles were synthesized by the Frens method. A Zetasizer Nano ZS instrument (Malvern, UK) and Photocor (Russia) were utilized for DLS measurements. Libra-120 transmission electron microscope (Carl Zeiss, Jena, Germany) at the Simbioz Center for the Collective Use of Research Equipment in the Field of Physical-Chemical Biology and Nanobiotechnology at the IBPPM RAS was utilized for obtaining the TEM images. Results: The average DLS diameters of the silica nanospheres (from 50 to 1000 nm) are shown to be in good agreement with TEM data, whereas DLS size distribution is usually broadened in comparison with TEM data. For strongly scattering gold nanoparticles (GNPs) with a diameter higher than 30–40 nm, deviation of their shape from spherical one and the impact of the rotational diffusion lead to false size peak at about 5–10 nm. For absorbing GNPs with diameters less than 20 nm and weak scattering particles, DLS method often gives a false second peak with larger size in the intensity distribution. The practical methods of solving the problem of false peaks are discussed. For fast estimation of the average size of GNPs in the range of 15–100 nm, the absorption spectroscopy can give reasonable sizes derived from analytical and graphical calibrations (see next paper). For GNPs with a diameter of 3–15 nm, the calibration curve for the size determination is based on the measurement of the ratio between the absorption intensities at the plasmon resonance wavelength and at 450 nm. Conclusion: The relative advantages and drawbacks of three methods (TEM, DLS, and absorption spectroscopy) for silica and gold nanoparticle sizing have been discussed. For spherical particles, the average DLS size are in good agreement with TEM data, whereas the DLS size distribution is typically much broader than that derived from TEM histograms. What is more, DLS size distribution can be greatly affected by the rotational diffusion even for slightly nonspherical particles

Reference: 

1. Cummins H. Z., Pike E. R. Photon Correlation and Light Beating Spectroscopy. NATO Advanced Study Institutes Series. New York : Plenum Press, 1974. 584 p.

2. Pecora R. Dynamic Light Scattering. Applications of Photon Crrelation Spectroscopy. N.Y. ; L. : Plenum Press, 1985. 420 p.

3. Meyer W. V., Smart A. E., Wegdam G. H., Brown R. G. W. Photon correlation and scattering : introduction to the feature issue // Appl. Opt. 2006. Vol. 45. P. 2149−2154.

4. Tikhonov A. N., Goncharsky A. V., Stepanov V. V., Yagola A. G. Numerical Methods for the Solution of Ill-Posed Problems. Dordrecht : Kluwer Academic Publ., 1995. 254 p.

5. Khlebtsov N. G. On the dependence of the light scattering intensity on the averaged size of polydisperse particles : comments on the paper by M. S. Dyuzheva et al. (Colloid J. 2002. Vol. 64, no. 1, p. 39) // Colloid J. 2003. Vol. 65, № 5. P. 652−655. URL: http://link.springer.com/article/10.1023/A:1026148512418

6. Berne B. J., Pecora R. Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Mineola. N.Y. : Dover Publ., 2000. 384 p.

7. Roebben G., Ramirez-Garcia S., Hackley V. A., Roesslein M., Klaessig F., Kestens V., Lynch I., Garner C. M., Rawle A., Elder A., Colvin V. L., Kreyling W., Krug H. F., Lewicka, Z. A., McNeil S., Nel A., Patri A., Wick P., Wiesner M., Xia T., Oberdörster G., Dawson K. A. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment // J. Nanopart. Res. 2011. Vol. 13. P. 2675−2687.

8. Lamberty A., Franks K., Braun A., Kestens V., Roebben G., Linsinger T. P. J. Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension // J. Nanopart. Res. 2011. Vol. 13. P. 7317−7329.

9. Pierre-Pierre N., Huo Q. Dynamic light scattering coupled with gold nanoparticle probes as a powerful sensing technique for chemical and biological target detection // ACS Symp. Ser. 2015. Vol. 1215. P. 157−179.

10. Speed D., Westerhoff P., Sierra-Alvarez R., Draper R., Pantano P., Aravamudhan S., Chen K.L., Hristovski K., Herckes P., Bi X., Yang Y., Zeng C., Otero-Gonzalez L., Mikoryak C., Wilson B.A., Kosaraju K., Tarannum M., Crawford S., Yi P., Liu X., Babu S. V., Moinpour M., Ranville J., Montano M., Corredor C., Posner J., Shadman F. Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry : Towards environmental health and safety assessments // Environ. Sci. : Nano. 2015. Vol. 2. P. 227−244.

11. Gambinossi F., Mylon S. E., Ferri J. K. Aggregation kinetics and colloidal stability of functionalized nanoparticles // Adv. Colloid Interfac. 2015. Vol. 222. P. 332−349.

12. Zhu X., Li J., He H., Huang M., Zhang X., Wang S. Application of nanomaterials in the bioanalytical detection of disease-related genes // Biosens. Bioelectron. 2015. Vol. 74. P. 113−133.

13. Zheng T., Bott S., Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation // ACS Appl. Mater. Inter. 2016. Vol. 8. P. 21585−21594.

14. Siddiqi K. S., Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system // J. Trace Elem. Med. Bio. 2017. Vol. 40. P. 10−23.

15. Dykman L. A., Bogatyrev V. A., Shchyogolev S. Yu., Khlebtsov N. G. Zolotye nanochastitsy: Sintez, svoistva, biomeditsinskoe primenenie [Gold Nanoparticles: Synthesis, Properties, and Biomedical Applications]. Moscow, Nauka Publ., 2008. 319 p. (in Russian).

16. Khlebtsov N. G., Dykman L. A. Optical properties and biomedical applications of plasmonic nanoparticles // J. Quant. Spectrosc. Radiat. Transfer. 2010. Vol. 111. P. 1−35.

17. Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications : Recent advances and perspecti - ves // Chem. Soc. Rev. 2012. Vol. 41. P. 2256−2282.

18. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Khlebtsov B. N., Englebienne P. A multilayer model for gold nanoparticle bioconjugates : application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method // Colloid J. 2003. Vol. 65. P. 622−635.

19. Jans H., Liu X., Austin L., Maes G., Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies // Anal. Chem. 2009. Vol. 81. P. 9425−9432.

20. Kalluri J. R., Arbneshi T., Khan S. A., Neely A., Candice P., Varisli B. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: Selective detection of arsenic in groundwater // Angew. Chem. Int. Ed. 2009. Vol. 48. P. 9668−9671.

21. Bell N. C., Minelli C., Shard A. G. Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement // Anal. Methods. 2013. Vol. 5. P. 4591−4601.

22. Alex S. A., Chakraborty D., Chandrasekaran N., Mukherjee A. A comprehensive investigation of the differential interaction of human serum albumin with gold nanoparticles based on the variation in morphology and surface functionalization // RSC Adv. 2016. Vol. 6. P. 52683−52694.

23. Sutariya P. G., Pandya A., Lodha A., Menon S. K. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles // Talanta. 2016. Vol. 147. P. 590−597. http://dx.doi.org/10.1016/j.talanta.2015.10.029

24. Liu X., Huo Q. A washing-free and amplifi cation-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering // J. Immunol. Methods. 2009. Vol. 349. P. 38−44.

25. Miao X., Zou S., Zhang H., Ling L. Highly sensitive carcinoembryonic antigen detection using Ag@Au coreshell nanoparticles and dynamic light scattering // Sens. Actuators, B. 2014. Vol. 191. P. 396−400.

26. Witten K. G. , Bretschneider J. C. , Eckert T., Richtering W., Simon U. Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering // Phys. Chem. Chem. Phys. 2008. Vol. 10, № 14. P. 1870–1875.

27. Dynamic Light Scattering (DLS), Malvern, UK. URL: http://www.malvern.com/en/products/technology/dynamic-light-scattering/d... (дата обращения: 04.01.2017).

28. Khlebtsov B. N., Khlebtsov N. G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method // Colloid J. 2011. Vol. 73. P. 118–127.

29. Khlebtsov B. N., Khanadeev V. A., Khlebtsov N. G. Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra // Langmuir. 2008. Vol. 24. P. 8964−8970.

30. Khanadeev V. A., Khlebtsov B. N., Khlebtsov N. G. Optical properties of gold nanoshells on monodisperse silica cores: experiment and simulations // J. Quant. Spectrosc. Radiat. Transfer. 2017. Vol. 187. P. 1−9.

31. Khlebtsov N. G., Bogatyrev V. A., Dykman L. A., Melnikov A. G. Spectral extinction of colloidal gold and its biospecifi c conjugates // J. Colloid Interface Sci. 1996. Vol. 180. P. 436−445.

32. Haiss W., Thanh N. T. K., Aveard J., Fernig D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra // Anal. Chem. 2007. Vol. 79. P. 4215−4221.

33. Njoki P. N., Lim I.-I. S., Mott D., Park H.-Y., Khan B., Mishra S., Sujakumar R., Luo J., Zhong C.-J. Size correlation of optical and spectroscopic properties for gold nanoparticles // J. Phys. Chem. B. 2007. Vol. 111. P. 14664−14669.

34. Khlebtsov N. G. Determination of size and concentration of gold nanoparticles from extinction spectra // Anal. Chem. 2008. Vol. 80, № 17. P. 6620−6625.

35. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range // J. Colloid Interfac Sci. 1968. Vol. 26. P. 62–69.

36. Hartlen K. D., Athanasopoulos A. P. T., Kitaev V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays // Langmuir. 2008. Vol. 24. P. 1714–1720. 

37. Khanadeev V. A., Khlebtsov B. N., Klimova S. A., Tsvet kov M. Y., Bagratashvili V. N., Sukhorukov G. B., Khlebtsov N. G. Large-scale high-quality 2D silica crystals : dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis // Nanotechnology. 2014. Vol. 25. P. 405602 (13 p).

38. Khlebtsov N. G. Optics and biophotonics of nanoparticles // Quantum Electron. 2008. Vol. 38. P. 504−529.

39. Brown K. R., Walter D. G., Natan M. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape // J. Chem. Mater. 2000. Vol. 12. P. 306−313.

40. Van der Zande B. M. I., Dhont Jan K. G., Bohmer Marcel R., Philipse A. P. Colloidal dispersions of gold rods characterized by dynamic light scattering and electrophoresis // Langmuir. 2000. Vol. 16. P. 459−464.

41. Rodríguez-Fernández J., Pérez-Juste J., Liz-Marzán L. M., Lang P. R. Dynamic light scattering of short Au rods with low aspect ratios // J. Phys. Chem. C. 2007. Vol. 111. P. 5020−5025.

Краткое содержание:
(downloads: 188)