Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Konyukhov A. I. Transformation of Eigenvalues of the Zakharov–Shabat Problem under the Effect of Soliton Collision. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 4, pp. 248-257. DOI: 10.18500/1817-3020-2020-20-4-248-257

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 281)

Transformation of Eigenvalues of the Zakharov–Shabat Problem under the Effect of Soliton Collision

Konyukhov Andrey Ivanovich, Saratov State University

Background and Objectives: The Zakharov–Shabat spectral problem allows to find soliton solutions of the nonlinear Schrodinger equation. Solving the Zakharov–Shabat problem gives both a discrete set of eigenvalues λj and a continuous one. Each discrete eigenvalue corresponds to an individual soliton with the real part Re(λj) providing the soliton velocity and the imaginary part Im(λj) determining the soliton amplitude. Solitons can be used in optical communication lines to compensate both non-linearity and dispersion. However, a direct use of solitons in return-to-zero signal encoding is inhibited. The interaction between solitions leads to the loss of transmitted data. The problem of soliton interaction can be solved using eigenvalues. The latter do not change when the solitons obey the nonlinear Schrodinger equation. Eigenvalue communication was realized recently using electronic signal processing. To increase the transmission speed the all-optical method for controlling eigenvalues should be developed. The presented research is useful to develop optical methods for the transformation of the eigenvalues. The purpose of the current paper is twofold. First, we intend to clarify the issue of whether the dispersion perturbation can not only split a bound soliton state but join solitons into a short oscillating period breather. The second goal of the paper is to describe the complicated dynamics and mutual interaction of complex eigenvalues of the Zakharov–Shabat spectral problem. Materials and Methods: Pulse propagation in single-mode optical fibers with a variable core diameter can be described using the nonlinear Schrödinger equation (NLSE) which coefficients depends on the evolution coordinate. The NLSE with the variable dispersion coefficient was considered. The dispersion coefficient was described using a hyperbolic tangent function. The NLSE and the Zakharov– Shabat spectral problem were solved using the split-step method and the layer-peeling method, respectively. Results: The results of numerical analysis of the modification of soliton pulses under the effect of variable dispersion coefficient are presented. The main attention is paid to the process of transformation of eigenvalues of the Zakharov–Shabat problem. Collision of two in-phase solitons, which are characterized by two complex eigenvalues is considered. When the coefficients of the nonlinear Schrodinger equation change, the collision of the solitons becomes inelastic. The inelastic collision is characterized by the change of the eigenvalues. It is shown that the variation of the coefficients of the NLSE allows to control both real and imaginary parts of the eigenvalues. Two scenarios for the change of the eigenvalues were identified. The first scenario is characterized by preserving the zero real part of the eigenvalues. The second one is characterized by the equality of their imaginary parts. The transformation of eigenvalues is most effective at the distance where the field spectrum possesses a two-lobe shape. Variation of the NLSE coefficient can introduce splitting or joining of colliding soliton pulses. Conclusion: The presented results show that the eigenvalues can be changed only with a small variation of the NLSE coefficients. On the one hand, a change in the eigenvalues under the effect of inelastic soliton collision is an undesirable effect since the inelastic collision of solitons will lead to unaccounted modulation in soliton optical communication links. On the other hand, the dependence of the eigenvalues on the parameters of the colliding solitons allows to modulate the eigenvalues using all-fiber optical devices. Currently, the modulation of the eigenvalues is organized using electronic devices. Therefore, the transmission of information is limited to nanosecond pulses. For picosecond pulse communication, the development of all-optical modulation methods is required. The presented results will be useful in the development of methods for controlling optical solitons and soliton states of the Bose–Einstein condensate.

  1. Lamb G. L. Elements of soliton theory. New York, John Willey & Sons, 1980. 289 p.
  2. Mitra P., Stark J. Nonlinear limits to the information capacity of optical fibre communications. Nature, 2001, vol. 411, pp. 1027−1030. DOI: https://doi.org/10.1038/35082518
  3. Kivshar Yu. S., Agrawal G. P. Optical solitons: From fibers to photonic crystals. Amsterdam, Academic Press, 2003. 540 p.
  4. Hasegawa A., Nyu T. Eigenvalue communication. J. Lightwave Technol., 1993, vol. 11, pp. 395−399.
  5. Yousefi M. I., Kschischang F. R. Information transmission using the nonlinear fourier transform, Part I: mathematical tools. IEEE Trans. Inf. Theory, 2014, vol. 60, pp. 4312−4328. DOI: https://doi.org/10.1109/TIT.2014.2321143
  6. Yousefi M. I., Kschischang F. R. Information transmission using the nonlinear fourier transform, Part II: numerical methods. IEEE Trans. Inf. Theory, 2014, vol. 60, pp. 4329−4345. DOI: https://doi.org/10.1109/TIT.2014.2321151
  7. Yousefi M. I., Kschischang F. R. Information transmission using the nonlinear fourier transform, Part III: spectrum modulation. IEEE Trans. Inf. Theory, 2014, vol. 60, pp. 4346−4369. DOI: https://doi.org/10.1109/TIT.2014.2321155
  8. Prilepsky J. E., Derevyanko S. A., Blow K. J., Gabitov I., Turitsyn S. K. Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels. Phys. Rev. Lett., 2014, vol. 113, pp. 1‒5. 013901. DOI: https://doi.org/10.1103/PhysRevLett.113.013901
  9. Turitsyna E. G., Turitsyn S. K. Digital signal processing based on inverse scattering transform. Opt. Lett., 2013, vol. 38, pp. 4186−4188. DOI: https://doi.org/10.1364/OL.38.004186
  10. Yangzhang X., Aref V., Le S. T., Bülow H., Lavery D., Bayvel P. Dual-polarization non-linear frequency-division multiplexed transmission with b-modulation. J. of Lightwave Technol., 2019, vol. 37, pp. 1570−1578.
  11. Goosens J.-W., Yousefi M. I., Jaouën Y., Hafermann H. Polarization-division multiplexing based on the nonlinear Fourier transform. Opt. Express, 2017, vol. 25, pp. 26437−26452. DOI: https://doi.org/10.1364/OE.25.026437
  12. Gaiarin S., Perego A. M., Da Silva E. P., Da Ros F., Zibar D. Dual-polarization nonlinear Fourier transformbased optical communication system. Optica, 2018, vol. 5, pp. 263−270. DOI: https://doi.org/10.1364/OPTICA.5.000263
  13. Aref V., Le S. T., Bülow H. Modulation over nonlinear Fourier spectrum: continuous and discrete spectrum. J. of Lightwave Technol., 2018, vol. 36, pp. 1289−1295. DOI: https://doi.org/10.1109/JLT.2018.2794475
  14. Akhmanov S. A., Vysloukh V. A., Chirkin A. S. Optics of Femtosecond Laser Pulses. New York, Am. Inst. of Physics, 1992. 366 p.
  15. Lee K.-S., Buck J. A. Wavelength conversion through higher-order soliton splitting initiated by localized channel perturbations. J. Opt. Soc. Am. B, 2003, vol. 20, pp. 514−536. DOI: https://doi.org/10.1364/JOSAB.20.000514
  16. Hause A., Mahnke C., Mitschke F. Impact of fiber loss on two-soliton states: Substantial changes in eigenvalue spectrum. Phys. Rev. A, 2018, vol. 98, pp. 1‒9. 033814. DOI: https://doi.org/10.1103/PhysRevA.98.033814
  17. Sysoliatin A.A., Senatorov A.K., Konyukhov A.I., Melnikov L.A., Stasyuk V.A. Soliton fission management by dispersion oscillating fi ber. Opt. Express, 2007, vol. 15, pp. 16302−16307. DOI: https://doi.org/10.1364/OE.15.016302
  18. Kartashov Y. V., Crasovan L., Zelenina A. S., Vysloukh V. A., Sanpera A., Lewenstein M., Torner L. Soliton eigenvalue control in optical lattices. Phys. Rev. Lett., 2004, vol. 93, pp. 1−4. 143902. DOI: https://doi.org/10.1103/PhysRev-Lett.93.143902
  19. Aleshkevich V. A., Vysloukh V. A., Zhukarev A. S., Kartashev Ya. V., Sinilo P. V. Stimulated decay of N-soliton pulses and optimal separation of one-soliton components. Quantum Electronics, 2003, vol. 33, pp. 460−464. DOI: https://doi.org/10.1070/QE2003v033n05ABEH002435
  20. Castillo M. D. I., Cerda S. C., Martinez D.R. Splitting after collision of high-order bright spatial solitons in Kerr media. Opt. Express, 2014, vol. 22, pp. 30769−30776. DOI: https://doi.org/10.1364/OE.22.030769
  21. Weng W., Bouchand R., Kippenberg T. J. Formation and collision of multistability-enabled composite dissipative Kerr solitons. Phys. Rev. X, 2020, vol. 10, pp.1−16. 021017. DOI: https://doi.org/10.1103/PhysRevX.10.021017
  22. Gochelashvili K. S., Sysoliatin A. A., Konyukhov A. I., Melnikov L. A., Mavrin P. A., Salgansky M. Yu. Modification of the discrete spectral parameters of optical solitons in fibers with variable dispersion. Bull. Lebedev Phys. Inst., 2017, vol. 44, pp. 343−346. DOI: https://doi.org/10.3103/S1068335617110082
  23. Konyukhov A.I., Dorokhova M.A., Melnikov L.A., Plastun A.S. Inelastic collision and fusion of optical solitons in dispersion oscillating fiber. Laser Physics Letters, 2015, vol. 12, pp. 1−5. 055103. DOI: https://doi.org/10.1088/1612-2011/12/5/055103
  24. Konyukhov A. I., Mavrin P. A., Shchurkin E. V. Discreteeigenvalue multiplexing for soliton fiber-optic communication links. Izv. Saratov Univ. (N. S.), Ser. Physics, 2018, vol. 18, iss. 1, pp. 16−22 (in Russian). DOI: https://doi.org/10.18500/1817-3020-2018-18-1-16-22
  25. Konyukhov A. I., Schurkin E. V., Melnikov L. A., Sysolyatin A. A., Gochelashvili K. S. On the all-fiber optical methods of the generation and recognition of soliton states. J. of Exper. and Theor. Phys., 2019, vol. 128, pp. 384−395. DOI: https://doi.org/10.1134/S1063776119020213
  26. Konyukhov A. I., Dorokhova M. A., Melnikov L. A., Plastun A. S. Controlling the interaction between optical solitons using periodic dispersion variations in an optical fibre. Quantum Electronics, 2015, vol. 45, pp. 1018−1022. DOI: https://doi.org/10.1070/QE2015v045n11ABEH015863
  27. Dorokhova M. A., Konyukhov A. I., Melnikov L. A., Plastun A. S. Constructive Interference of Optical Solitons in Dispersion Oscillating Fiber. Izv. Saratov Univ. (N. S.), Ser. Physics, 2014, vol. 14, iss. 1, pp. 32−35 (in Russian).
  28. Konyukhov A. I., Sysoliatin A. A. Generation of highintensity optical breathers via soliton collision in fibres with variable dispersion. Laser Physics, 2020, vol. 30, pp. 1−6. 015401. DOI: https://doi.org/10.1088/1555-6611/ab543b
  29. Kuznetsov E. A., Mikhailov A. V. Relaxation oscillations of solitons. JETP Lett., 1994, vol. 60, pp. 486−490.
  30. Kuehl H. H. Solitons on an axially nonuniform optical fiber. J. Opt. Soc. Am. B, 1988, vol. 5, pp. 709−713. DOI: https://doi.org/10.1364/JOSAB.5.000709
  31. Satsuma J., Yajima N. B. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog. Theor. Phys., 1974, vol. 55, pp. 284–306. DOI: https://doi.org/10.1143/PTPS.55.284
  32. Vysloukh V. A., Cherednik I. V. On restricted N-soliton solutions of the nonlinear Schrödinger equation. Theoretical and Mathematical Physics, 1987, vol. 71, pp. 346−351. DOI: https://doi.org/10.1007/BF01029093