Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Genina E. A., Bashkatov A. N., Tuchin V. V. The Study of Possibility of Magnetic Microparticle Deposit in Skin at Superficial Application. Izvestiya of Saratov University. Physics , 2012, vol. 12, iss. 2, pp. 26-30. DOI: 10.18500/1817-3020-2012-12-2-26-30

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 118)
537.636; 53.06

The Study of Possibility of Magnetic Microparticle Deposit in Skin at Superficial Application

Genina Elina Alekseevna, Saratov State University
Bashkatov Alexey Nikolaevich, Saratov State University
Tuchin Valeriy Viktorovich, Saratov State University

The depth of penetration and localization of magnetic microparticles in skin under action of magnetostatic field was studied experimentally. In the study magnetic powder made from intermetallic composition SmCo5 consisting of 37% of samarium and 63% of cobalt was used. Sizes of the particles varied in the range 3–5 μm. As a carrier propylene glycol was used. The experiments were carried out with human skin samples in vitro. It was shown that the magnetic suspension on the basis of magnetic microparticles SmCo5 applied on the skin surface, accumulated in skin appendages (sweat and sebaceous glands, hair follicles) in the depth up to 1 mm.

  1. Pitsillides C. M., Joe E. K., Wei X., Anderson R. R., Lin C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles // Biophysical J. 2003. Vol. 84. P. 4023–4032.
  2. El-Sayed I. H., Huang X., El-Sayed M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer // Nano Letters. 2005. Vol. 5, № 5. P. 829–834.
  3. Penn S. G., He L., Natan M. J. Nanoparticles for bioanalysis // Curr. Opin. Chem. Biol. 2003. Vol. 7. P. 609–615.
  4. Liu J., Lu Y. Colorimetric biosensors based on DNAzymeassembled gold nanoparticles // J. Fluorescence. 2004. Vol. 14, № 4. P. 343–354.
  5. Lee Sh., McAuliffe D. J., Kollias N., Flotte Th. J., Doukas A. G. Photomechanical Delivery of 100-nm microspheres through the stratum corneum: implications for transdermal drug delivery // Lasers Surg. Med. 2002. Vol. 31. P. 207–210.
  6. Mordon S., Sumian Ch., Devoisselle J. M. Site-specifi c methylene blue delivery to pilosebaceous structures using highly porous nylon microspheres: an experimental evaluation // Lasers Surg. Med. 2003. Vol. 33. P. 119–125.
  7. Lauer A. C., Ramachandran C., Lieb L. M., Niemiec S., Weiner N. D. Targeted delivery to the pilosebaceous unit via liposomes // Adv. Drug Deliv. Rev. 1996. Vol. 18. P. 311–324.
  8. Lademann J., Schanzer S., Jacobi U., Schaefer H., Pfl ucker F., Driller H., Beck J., Meinke M., Roggan A., Sterry W. Synergy effects between organic and inorganic UV fi lters in sunscreens // J. Biomed. Opt. 2005. Vol. 10, № 1. P. 014008.
  9. Попов А. П., Приезжев А. В., Lademann J., Myllyla R. Влияние нанометровых частиц оксида титана на защитные свойства кожи в УФ диапазоне // Оптический журн. 2006. Т. 73, № 3. С. 67–71.
  10. Terentyuk G. S., Maslyakova G. N., Suleymanova L. V., Khlebtsov N. G., Khlebtsov B. N., Akchurin G. G., Maksimova I. L., Tuchin V. V. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer therapy // J. Biomed. Opt. 2009. Vol. 14, № 2. P. 021016.
  11. Tuchina E. S., Tuchin V. V. TiO2 nanoparticle enhanced photodynamic inhibition of pathogens // Laser Phys. Let. 2010. Vol. 7. P. 607.
  12. Scientifi c and clinical applications of magnetic carriers / eds. U. Hafeli et al. N. Y. : Plenum Press, 1997.
  13. Scientifi c and Clinical Applications of Magnetic Carriers. URL: http://www.magneticmicrosphere.com (дата обращения: 01.06.2012).
  14. Widder K. Regional drug delivery using a novel magnetic carrier // Proc. Intern. Symposium Magnetic Car riers – Biological and Clinical Applications. Wuhan, China, 1999. P. 17.
  15. Hafeli U. Magnetic Microspheres: An Overview of in vivo Medical Application // Proc. Intern. Symposium Magnetic Carriers – Biological and Clinical Applications. Wuhan, China, 1999. P. 1–2.
  16. Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications // Biomaterials. 2005. Vol. 26. P. 3995–4021.
  17. Jordan A., Wust P., Fahling H., John W., Hinz A., Felix R. Inductive heating of ferrimagnetic particles and magnetic fl uids: physical evaluation of their potential for hyperthermia // Intern. J. Hyperthermia. 1993. Vol. 9, № 1. P. 51–68.
  18. Schaefer H., Redelmeier T. E. Skin Barrier. Basel : Karger, 1996.
  19. Lauer A. C., Ramachandran C., Lieb L. M., Niemiec S., Weiner N. D. Targeted delivery to the pilosebaceous unit via liposomes // Adv. Drug Deliv. Rev. 1996. Vol. 18. P. 311–324.
  20. Baroli B., Ennas M. G., Loffredo F., Isola M., Pinna R., Lopez-Quintela M. A. Penetration of metallic nanoparticles in human full-thickness skin // J. Invest. Dermatol. 2007. Vol. 127. P. 1701–1712.
  21. Cevc G., Vierl U. Nanotechnology and the transdermal route A state of the art review and critical appraisal // J. Controlled Release. 2010. Vol. 141. P. 277–299.
  22. Попов А. П., Приезжев А. В., Ладеман Ю., Мюллюля Р. Влияние многократного рассеяния света на наночастицах диоксида титана, имплантированных в приповерхостный слой кожи, на пропускание излучения в разных диапазонах длин волн // Квантовая электроника. 2007. Т. 37, № 1. С. 17–21.
  23. Roxhed N., Samel B., Nordquist L., Griss P., Stemme G. Painless drug delivery through microneedle-based transdermal patches featuring active infusion // IEEE Trans. Biomed. Eng. 2008. Vol. 55. P. 1063–1071.
  24. Kendall M., Rishworth S., Carter F., Mitchell T. Effects of relative humidity and ambient temperature on the ballistic delivery of micro-particles to excised porcine skin // J. Invest. Dermatol. 2004. Vol. 122. P. 739–746.
  25. Kim C. S., Wilder-Smith P., Ahn Y.-C., Liaw L.-H., Chen Z., Kwon Y. J. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles // J. Biomed. Opt. 2009. Vol. 14. P. 034008.
  26. Генина Э. А., Долотов Л. Е., Терентюк Г. С., Башкатов А. Н., Маслякова Г. Н., Тучин В. В., Ярославский И. В., Альтшулер Г. Б. Фракционная лазерная микроабляция кожи для усиления ее проницаемости для наночастиц // Квантовая электроника. 2011. Т. 41, № 5. С. 396–401.
  27. Терентюк Г. С., Генина Э. А., Башкатов А. Н., Рыжова М. В., Цыганова Н. А., Чумаков Д. С., Хлебцов Б. Н., Сазонов А. А., Долотов Л. Е., Тучин В. В., Хлебцов Н. Г., Иноземцева О. А. Использование фракционной лазерной микроабляции и ультразвука для улучшения доставки наночастиц золота в кожу in vivo // Квантовая электроника. 2012. Т. 42, № 6. С. 471–477.