Izvestiya of Saratov University.

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

Cite this article as:

Skripal A. V., Ponomarev D. V., Ruzanov O. M., Timofeev I. O. Resonance Features in the Allowed and Forbidden Bands of Microwave Coaxial Bragg Structures with Periodically Alternating Dielectric Filling. //Izvestiya of Saratov University. New series. Series: Physics. , 2020, vol. 20, iss. 1, pp. 29-41. DOI:

Опубликована онлайн: 
Язык публикации: 

Resonance Features in the Allowed and Forbidden Bands of Microwave Coaxial Bragg Structures with Periodically Alternating Dielectric Filling

Skripal Alexander Vladimirovich, Saratov State University
Ponomarev Denis Viktorovich, Saratov State University
Ruzanov Oleg Mikhailovich, Saratov State University
Timofeev Ilya Olegovich, Saratov State University

Background and Objectives: Microwave Bragg structures are used to create various types of microwave devices, including tunable resonators, directional couplers, miniature antennas, matched loads, various types of microwave filters with controlled characteristics. Coaxial Bragg structures based on coaxial elements, which are one of the most common types of microwave elements in waveguide systems, are characterized by a wide frequency range and the absence of radiation losses. Existing coaxial Bragg structures have significant dimensions or require irreversible structural changes to be made in their design. In this article, the opportunity to create a small-sized coaxial Bragg structure on the set of periodically arranged coaxial line segments with different dielectric filling is proposed. Materials and Methods: The transfer matrix of a complex quadrupole, which is a cascade connection of elementary quadrupole with known transmission matrices, was used to calculate the transmission and reflection coefficients of an electromagnetic wave in coaxial Bragg structures. For experimental studies, a measuring section was created in the form of a dismountable segment of the coaxial transmission line including a formed coaxial Bragg structure. Results: Amplitude-frequency characteristics of 11-layer coaxial Bragg structures without defects for different ratios of the electric lengths of the dielectric segments and 19-layer coaxial Bragg structures with the different defect location inside the structure for small 1.4 mm and large 19.26 mm defect lengths have been investigated. Conclusion: The сoaxial Bragg structure can be considered as several embedded in each other Bragg gratings with a different number of cells depending on the ratio of the electric lengths of elementary structural units. The frequency position of the defect mode in the coaxial Bragg structure with periodically alternating dielectric filling almost does not depend on the location of the defect inside the structure but on the electrophysical parameters of the defect. The amplitude of the defect mode is maximum for the defect located in the center of the coaxial Bragg structure.

Библиографический список: 
  1. Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V. One-Dimensional Microwave Photonic Crystals: New Applications. Boca Raton, CRC Press, 2019. 154 p. DOI:
  2. Belyaev B. A., Khodenkov S. A., Shabanov V. F. Investigation of frequency-selective devices based on a microstrip 2D photonic crystal. Doklady Physics, 2016, vol. 61, iss. 4, pp. 155–159. DOI:
  3. Kuriazidou C. A., Contopanagos H. F., Alexopolos N. G. Monolithic waveguide fi lters using printed photonic-bandgap materials. IEEE Trans. Microw. Theory Tech., 2001, vol. 49, no. 2, pp. 297–306. DOI:
  4. Ozbay E., Temelkuran B., Bayindir M. Microwave applications of photonic crystals. PIER, 2003, vol. 41, pp. 185–209. DOI:
  5. Burns Gerard W., Thayne I. G., Arnold J. M. Improvement of Planar Antenna Effi ciency When Integrated With a Millimetre-Wave Photonic. Proc. of European Conference on Wireless Technology. Amsterdam, Netherlands, 2004, 11–12th October, pp. 229–232.
  6. Fernandes H. C. C., Medeiros J. L. G., Junior I. M. A., Brito D. B. Photonic Crystal at Millimeter Waves Applications. PIERS Online, 2007, vol. 3, no. 5, pp. 689–694. DOI:
  7. El- Shaarawy H. B., Coccetti F., Plana R., El-Said M., Hashish E.A. Defected ground structures (DGS) and uniplanar compact-photonic band gap (UC-PBG) structures for reducing the size and enhancing the out-of-band rejection of microstrip bandpass ring resonator fi lters. WSEAS Trans. on Communications, 2008, vol. 7, iss. 11, pp. 1112–1121.
  8. Chul-Sik Kee, Mi-Young Jang, Sung-Il Kim, Ikmo Park, Lim H. Tuning and widening of stop bands of microstrip photonic band gap ring structures. Appl. Phys. Lett., 2005, vol. 86, pp. 181109. DOI:
  9. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S., Kulikov M. Yu., Ponomarev D. V. Microstrip Photonic Crystals Used for Measuring Parameters of Liquids. Tech. Phys., 2010, vol. 55, no. 8, pp. 1216–1221. DOI:
  10. Usanov D. A., Skripal’ A. V., Romanov A. V. Complex Permittivity of Composites Based on Dielectric Matrices with Carbon Nanotubes. Tech. Phys., 2011, vol. 56, iss. 1, pp. 102–106. DOI:
  11. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S. Determination of the Metal Nanometer Layer Thickness and Semiconductor Conductivity in Metal–Semiconductor Structures from Electromagnetic Refl ection and Transmission Spectra. Tech. Phys., 2006, vol. 51, iss. 5, pp. 644–649. DOI:
  12. Usanov D. A., Skripal A. V., Abramov A. V., Bogolubov A. S., Skvortsov V. S., Merdanov M. K. Use of Waveguide Phonic Structures for Measurements of Parameters of Nanometer Metal Layers on Dielectric Substrates. Izvestija vuzov. Jelektronika [Proceedings of Universities. Electronics], 2007, no. 6, pp. 25–32 (in Russian).
  13. Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V., Latysheva E. V. Multiparametric Measurements of Epitaxial Semiconductor Structures with the Use of OneDimensional Microwave Photonic Crystals. J. Communications Technology and Electronics, 2016, vol. 61, no. 1, pp. 42–49. DOI:
  14. Gomez A., Vegas A., Solano M. A., Lakhtakia A. On One- and Two-Dimensional Electromagnetic Band Gap Structures in Rectangular Waveguides at Microwave Frequencies. Electromagnetics, 2005, vol. 25, iss. 5, pp. 437–460. DOI:
  15. Mukhortov V. M., Masychev S. I., Mamatov A. A., Mukhortov Vas. M. Electrically Reconstructable Phonon Crystal Based on a Coplanar Waveguide with a Nanodimensional Ferroelectric Film. Tech. Phys. Lett., 2013, vol. 39, iss. 10, pp. 921–923. DOI:
  16. Nikitin Al. A., Nikitin An. A., Ustinova A. B., Lähderanta E., Kalinikos B. A. Microwave Photonic Crystal on the Slot Transmission Linewith a Ferroelectric Film. Tech. Phys., 2016, vol. 61, iss. 6, pp. 913–918. DOI:
  17. Usanov D. A., Nikitov S. A., Skripal A. V., Ryazanova D. S. Bragg Microwave Structures Based on WaveguideSlot Lines. J. Communications Technology and Electronics, 2016, vol. 61, no. 4, pp. 379–384. DOI:
  18. Usanov D. A., Nikitov S. A., Skripal A. V., Merdanov M. K., Evteev S. G. Waveguide Photonic Crystals on Resonant Irises with Characteristics Controlled by n-i-p-i-n-Diodes. J. Communications Technology and Electronics, 2018, vol. 63, no. 1, pp. 58–63. DOI:
  19. Saib A., Huynen I. Periodic Metamaterials Combining Ferromagnetic Nanowires and Dielectric Structures for Planar Circuits Applications. Electromagnetics, 2006, vol. 26, iss. 3–4, pp. 261–277. DOI:
  20. Tae-Yeoul, Kai Chang. Uniplanar one-dimensional photonic-bandgap structures and resonators. IEEE Trans. Microw. Theory Tech., 2001, vol. 49, no. 3, pp. 549–553. DOI:
  21. Md. Nurunnabi Mollaha, Nemai C. Karmakar, Jeffrey S. Fu. Uniform circular photonic bandgap structures (PBGSs) for harmonic suppression of a bandpass filter. International Journal of Electronics and Communications (AEÜ), 2008, vol. 62, pp. 717–724. DOI:
  22. Nemai Chandra Karmakar, and Mohammad Nurunnabi Mollah. Investigations Into Nonuniform PhotonicBandgap Microstripline Low-Pass Filters. IEEE Trans. Microw. Theory Tech., 2003, February, vol. 51, no. 2, pp. 564–572. DOI:
  23. Kitahara Hideaki, Kawaguchi Tsuyoshi, Miyashita Junichi, Takeda Mitsuo Wada. Impurity Mode in Microstrip Line Photonic Crystal in Millimeter Wave Region. J. Phys. Soc. Jpn., 2003, April 15, vol. 72, no. 4, pp. 951–955. DOI:
  24. Ranjit D. Pradhan, George H. Watson. Impurity effects in coaxial-connector photonic crystals: A quasi-onedimensional periodic system. Phys. Rev. B., 1999, vol. 60, no. 4, pp. 2410–2415. DOI:
  25. Schneider Garrett J., Hanna Stefan, Davis Joshua L., Watson George H. Defect modes in coaxial photonic crystals. J. Appl. Phys., 2001, vol. 90, no. 6, pp. 2642–2649. DOI:
  26. Tao Wei, Songping Wu, Jie Huang, Hai Xiao, Jun Fan. Coaxial cable Bragg grating. Appl. Phys. Lett., 2011, vol. 99, pp. 113517.
  27. Jie Huang, Tao Wei, Xinwei Lan, Jun Fan, Hai Xiao. Coaxial cable Bragg grating sensors for large strain measurement with high accuracy. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012, Proc. of SPIE, vol. 8345, pp. 83452Z. DOI:
  28. Nasybullin A. R., Morozov O. G., Sevast’ianov A. A. Bragg sensor microwave structures on coaxial cable. Zhurnal radioelektroniki [Journal of Radioelectronics], 2014, no. 3, pp. 1–17 (in Russian).
  29. Morozov G. A., Morozov O. G., Nasybullin A. R., Sevastjanov A. A., Farkhutdinov R. V. Bragg coaxial microwave structure in the sensor system. Physics of Wave Processes and Radio Systems, 2014, vol. 17, no. 3, pp. 65–70 (in Russian).
  30. Sazonov D. M. Antenny i ustroistva SVCh. Uchebnik dlia radiotekhn. spets. vuzov [Microwave circuits and antennas]. Moscow, Vysshaia shkola, 1988. 432 p. (in Russian).
  31. Fel’dshtein A. L., Iavich L. R., Smirnov V. P. Spravochnik po elementam volnovodnoi tekhniki. 2-e izdanie, pererab. i dop. [Waveguide Handbook. 2nd ed.]. Moscow, Sovetskoe radio Publ., 1967. 651 p. (in Russian).
Полный текст в формате PDF(Ru):
(downloads: 38)