Cite this article as:

Sagaidachnaya E. A., Yanina I. Y., Kochubey . I. Prospects For Application of Upconversion Particles NaYF4:Er,Yb for Phototherapy. Izvestiya of Saratov University. New series. Series Physics, 2018, vol. 18, iss. 4, pp. 253-274. DOI:


Prospects For Application of Upconversion Particles NaYF4:Er,Yb for Phototherapy


Background and Objectives: Functionalized upconversion particles allow for photodynamic and photothermal therapy of tumor with simultaneous temperature monitoring and visualization of the area of treatment. Upconversion particles can increase the depth of therapeutic effects due to the high penetration depth of the required excitation radiation. That is why they are a promising material for the combined phototherapy and simultaneous monitoring of biological tissue heating. The purpose of the paper is to review the operating principle of upconversion particles, methods of synthesis and therapeutic applying.

Results: The features of the hydrothermal synthesis of upconversion particles NaYF4:Er,Yb, which seems to be the most promising, we considered. The hydrothermal method allows us to vary parameters of synthesized particles by adjusting the temperature and duration of synthesis, concentration of passivating and fluorinating agents. Thus, particles of different morphology, from rods to plates, and with different sizes, 10 nm – 5 μm, can be obtained. The subsequent functionalization of the particles by photosensitizer provides the photodynamic activity. The results of in vitro studies on marker substances and cells are presented. They confirm the efficiency of the generation of oxygen toxic forms in the presence of functionalized upconversion particles and their cytotoxic effect.

Conclusion: It is shown that the use of such particles enables one to increase the depth of therapeutic effect. This leads to a higher effectiveness of PDT and expansion of the boundaries of its applicability. The described processes may give grounds for the development of photodynamic therapy methods aimed at expanding the field and functionality of the therapy.


1. Rak, Informacionnyj bjulleten', Vsemirnaja organizacija zdravoohranenija (Cancer, newsletter, World health organization). Available at: (accessed 7 March 2018) (in Russian).

2. Chang H., Xie J., Zhao B., Liu B., Xu S., Ren N., Xie X., Huang L., Huang W. Rare earth ion-doped upconversion nanocrystals: synthesis and surface modifi cation. Nanomaterials, 2015, vol. 5, no. 1, pp. 1‒25. DOI:

3. Qian H. S., Guo H. C., Ho P. C., Mahendran R., Zhang Y. Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small, 2009, vol. 5, no. 20, pp. 2285‒90. DOI:

4. Abdel-Kader M. H. Photodynamic therapy. Berlin, Heidelberg, Springer-Verlag, 2016. 317 p. DOI:

5. Filonenko E. V. Fljuorescentnaja diagnostika i fotodinamicheskaja terapija – obosnovanie primenenija i vozmozhnosti v onkologii [Fluorescence diagnostics and photodynamic therapy: justifi cation of applications and opportunities in oncology]. Fotodinamicheskaja terapija i fotodiagostika [Photodynamic therapy and photodiagnosis], 2014, vol. 1, pp. 3‒7 (in Russian).

6. DeRosa M. C., Crutchley R. J. Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 2002, vol. 233/234, pp. 351/371.

7. Obaid G., Russell D. A. Nanoparticles for PDT. In: Handbook of Photomedicine. Eds. M. R. Hamblin, Y.-Y. Huang. Boca Raton, FL, Taylor & Francis, CRC Press, 2013, pp. 367–378.

8. Wang C., Cheng L., Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics, 2013, vol. 3, no. 5, pp. 317. DOI:

9. Wang C., Tao H., Cheng L., Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials, 2011, vol. 32, no. 26, pp. 6145‒6154. DOI:

10. Khaydukov E. V., Mironova K. E., Semchishen V. A., Generalova A. N., Nechaev A. V., Khochenkov D. A., Stepanova E. V., Lebedev O. I., Zvyagin A. V., Deyev S. M., Panchenko V. Y. Ribofl avin photoactivation by upconversion nanoparticles for cancer treatment. Scientifi c reports, 2016, vol. 6, p. 35103. DOI:

11. Zhang F. Photon upconversion nanomaterials. Springer, 2016. 428 p. DOI:

12. Chen G., Qiu H., Prasad P. N., Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chemical reviews, 2014, vol. 114, no. 10, pp. 5161‒5214. DOI:

13. Feng W., Zhu X., Li F. Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Materials, 2013, vol. 5, no. 12, pp. e75. DOI:

14. Zhou J., Liu Z., Li F. Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews, 2012, vol. 41, no. 3, pp. 1323‒1349. DOI:

15. Du P., Luo L., Yu J. S. Facile synthesis of Er3+/Yb3+- codoped NaYF4 nanoparticles: a promising multifunctional upconverting luminescent material for versatile applications. RSC Advances, 2016. vol. 6, no. 97, pp. 94539–94546. DOI:

16. Chatterjee D. K., Gnanasammandhan M. K., Zhang Y. Small upconverting fl uorescent nanoparticles for biomedical applications. Small, 2010, vol. 6, no. 24, pp. 2781–2795. DOI:

17. Tong L., Li X., Hua R., Li X., Zheng H., Sun J., Zhang J., Cheng L., Chen B. Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4:Yb3+/Er3+ nano-/micro-crystals derived from a microwave-assisted hydrothermal route. Journal of Luminescence, 2015, vol. 167, pp. 386–390. DOI:

18. Gainer C. F., Romanowski M. A review of synthetic methods for the production of upconverting lanthanide nanoparticles. Journal of Innovative Optical Health Sciences, 2014, vol. 7, no. 2, pp. 1330007. DOI:

19. Chen J., Zhao J. X. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors, 2012, vol. 12, no. 3, pp. 2414–2435. DOI:

20. Glushkova A. V., Radilov A. S., Rembovskij V. R. Nanotehnologii i nanotoksikologija – vzgljad na problem [Nanotechnologies and nanotox1cology – view of the problem]. Toksikologicheskij vestnik [Toxicological Bulletin], 2007, vol. 6, pp. 4–8 (in Russian).

21. Zhao J., Zhao J., Sun Y., Kong X., Tian L., Wang Y., Tu L., Zhao J., Zhang H. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+,Er3+ nanocrystals/submicroplates at low doping level. The Journal of Physical Chemistry B, 2008. vol. 112, no. 49. pp. 15666–15672. DOI:

22. Li C., Quan Z., Yang J., Yang P., Lin J. Highly uniform and monodisperse β-NaYF4: Ln3+ (Ln= Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorganic chemistry, 2007, vol. 46, no. 16, pp. 6329– 6337. DOI:

23. Zeng S., Ren G., Xu C., Yang Q. High uniformity and monodispersity of sodium rare-earth fl uoride nanocrystals: controllable synthesis, shape evolution and optical properties. CrystEngComm, 2011, vol. 13, no. 5, pp. 1384–1390. DOI:

24. Li C., Yang J., Quan Z., Yang P., Kong D., Lin J. Different microstructures of β-NaYF4 fabricated by hydrothermal process: effects of pH values and fl uoride sources. Chemistry of Materials, 2007. vol. 19, no. 20. pp. 4933–4942. DOI:

25. Shang Y., Hao S., Liu J., Tan M., Wang N., Yang C., Chen G. Synthesis of upconversion β-NaYF4:Nd3+/ Yb3+/Er3+ particles with enhanced luminescent intensity through control of morphology and phase, Nanomaterials, 2015, vol. 5, no. 1, pp. 218–232. DOI:

26. Ding M., Yin S., Ni Y., Lu C., Chen D., Zhong J., Ji Z., Xu Z. Controlled synthesis of β-NaYF4:Yb3+/Er3+ microstructures with morphology-and size-dependent upconversion luminescence. Ceramics International, 2015. vol. 41, no. 6. pp. 7411–7420. DOI:

27. Zhang X., Yu H., Guo L., Jin J., Li Q., Guo Y., Fu Y., Shi Y., Zhao, L. Comprehensive model and investigation of F-ions-induced cubic-to-hexagonal phase transformation in NaYF4. Journal of Alloys and Compounds, 2017, vol. 728, pp. 1254–1259. DOI:

28. Assaaoudi H., Shan G. B., Dyck N., Demopoulos G. P. Annealing-induced ultra-effi cient NIR-to-VIS upconversion of nano-/micro-scale α and β NaYF4:Er3+,Yb3+ crystals. CrystEngComm, 2013, vol. 15, no. 23, pp. 4739–4746. DOI:

29. Wang Y., Cai R., Liu Z. Controlled synthesis of NaYF4:Yb, Er nanocrystals with upconversion fl uorescence via a facile hydrothermal procedure in aqueous solution. CrystEngComm, 2011, vol. 13, no. 6, pp. 1772–1774. DOI:

30. Schietinger S., Menezes L. D. S., Lauritzen B., Benson O. Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals. Nano letters, 2009, vol. 9, no. 6, pp. 2477–2481. DOI:

31. Wang F., Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews, 2009, vol. 38, no. 4, pp. 976–989. DOI:

32. Sun Y., Chen Y., Tian L., Yu Y., Kong X., Zhao J., Zhang H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er, nanocrystals. Nanotechnology, 2007, vol. 18, no. 27, pp. 275609. DOI:

33. Mai H. X., Zhang Y. W., Sun L. D., Yan C. H. Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscop. The Journal of Physical Chemistry C, 2007, vol. 111, no. 37, pp. 13730–13739. DOI:

34. Yu W., Wang X., Chen N., Du G., Gui W. A strategy to prepare highly redispersible and strongly luminescent α-NaYF4:Eu3+ hybrid nanostructures with multi-channel excitation. CrystEngComm, 2014, vol. 16, no. 15, pp. 3214–3221. DOI:

35. Qian H. S., Zhang Y. Synthesis of hexagonal-phase core–shell NaYF4 nanocrystals with tunable upconversion fl uorescence. Langmuir, 2008, vol. 24, no. 21, pp. 12123–12125. DOI:

36. Yang T., Sun Y., Liu Q., Feng W., Yang P., Li F. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials, 2012, vol. 33, no. 14, pp. 3733–3742. DOI:

37. Liu Q., Sun Y., Yang T., Feng W., Li C., Li F. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. Journal of the American Chemical Society, 2011, vol. 133, no. 43, pp. 17122–17125. DOI:

38. Vetrone F., Naccache R., Mahalingam V., Morgan C. G., Capobianco J. A. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater., 2009, vol. 19, pp. 2924–2929. DOI:

39. Sagaydachnaya E. A., Kochubey V. I., Konyukhova J. G. Infl uence of annealing temperature on the upconversion luminescence properties of NaYF4:Er,Yb@SiO2 particles. IOP Publishing. In Journal of Physics: Conference Series, 2017, vol. 917, no. 3, pp. 032006. DOI:

40. Dyck N. C., van Veggel F. C., Demopoulos G. P. Sizedependent maximization of upconversion effi ciency of citrate-stabilized β-phase NaYF4:Yb3+,Er3+ crystals via annealing. ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 22, pp. 11661–11667. DOI:

41. Klier D. T., Kumke M. U. Analysing the effect of the crystal structure on upconversion luminescence in Yb3+,Er3+-co-doped NaYF4 nanomaterials. Journal of Materials Chemistry C, 2015, vol. 3, no. 42, pp. 11228–11238. DOI:

42. Wei Y., Lu F., Zhang X., Chen D. Synthesis and characterization of effi cient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter. Journal of alloys and compounds, 2007, vol. 427, no. 1–2, pp. 333–340. DOI:

43. Lee J. S., Kim Y. J. The effects of preparation conditions on the structural and up-conversion properties of NaYF4:Yb3+,Er3+ nano powders. Optical Materials, 2011, vol. 33, no 7, pp. 1111–1115. DOI:

44. Monteiro-Riviere N. A., Tran C. L. Nanotoxicology: progress toward nanomedicine. Boca Ration, FL, CRC Press, 2014. 362 p.

45. Gnach A., Lipinski T., Bednarkiewicz A., Rybka J., Capobianco J. A. Upconverting nanoparticles: assessing the toxicity. Chemical Society Reviews, 2015, vol. 44, no. 6, pp. 1561–1584. DOI:

46. Maldiney T., Richard C., Seguin J., Wattier N., Bessodes M., Scherman D. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano, 2011, vol. 5, no. 2, pp. 854–862.

47. Cheng L., Yang K., Shao M., Lu X., Liu Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine, 2011, vol. 6, no. 8, pp. 1327–1340. DOI:

48. Wang F., Banerjee D., Liu Y., Chen X., Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst, 2010, vol. 135, no. 8, pp. 1839–1854. DOI:

49. Punjabi A., Wu X., Tokatli-Apollon A., El-Rifai M., Lee H., Zhang Y., Wang C., Liu Z., Chan E. M., Duan C., Han G. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano, 2014, vol. 8, no. 10, pp. 10621–10630. DOI:

50. Zou H., Jin F., Song X., Xing J. Singlet oxygen generation of photosensitizers effectively activated by Nd3+-doped upconversion nanoparticles of luminescence intensity enhancing with shell thickness decreasing. Applied Surface Science, 2017, vol. 400, pp. 81–89. DOI:

51. Han R., Shi J., Liu Z., Wang H., Wang Y. Fabrication of mesoporous silica-coated upconverting nanoparticles with ultrafast photosensitizer loading and 808 nm NIR light triggering capability for photodynamic therapy. Chemistry Asian Journal, 2017, vol. 12, pp. 2197–2201. DOI:

52. Guo H., Qian H., Idris N. M., Zhang Y. Singlet oxygeninduced apoptosis of cancer cells using upconversion fl uorescent nanoparticles as a carrier of photosensitizer. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, vol. 6, no 3, pp. 486–495. DOI:

53. Chatterjee D. K., Yong Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine, 2008, vol. 3, no. 1, pp. 73–82. DOI:

54. Chen D., Tao R., Tao K., Chen B., Choi S. K., Tian Q., Xu Y., Zhou G., Sun K. Effi cacy dependence of photodynamic therapy mediated by upconversion nanoparticles: subcellular positioning and irradiation productivity. Small, 2017, vol. 13, no. 13, pp. 1602053. DOI:

55. Yang J., Deng Y., Wu Q., Zhou J., Bao H., Li Q., Zhang F., Li F., Tu B., Zhao D. Mesoporous silica encapsulating upconversion luminescence rare-earth fl uoride nanorods for secondary excitation. Langmuir, 2010, vol. 26, no. 11, pp. 8850–8856. DOI:

56. Zhou A., Wei Y., Wu B., Chen Q., Xing D. Pyropheophorbide A and c(RGDyK) Comodified Chitosan- Wrapped Upconversion Nanoparticle for Targeted Near-Infrared Photodynamic Therapy. Mol. Pharmaceutics, 2012, vol. 9, pp. 1580–1589. DOI:

57. Chen X., Zhao Z., Jiang M., Que D., Shi S., Zheng N. Preparation and photodynamic therapy application of NaYF4:Yb,Tm–NaYF4:Yb,Er multifunctional upconverting nanoparticles. New journal of chemistry, 2013, vol. 37, no. 6, pp. 1782–1788. DOI:

58. Lin M., Zhao Y., Wang S., Liu M., Duan Z., Chen Y., Li F., Xu F., Lu T. Recent advances in synthesis and surface modifi cation of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnology advances, 2012, vol. 30, no. 6, pp. 1551–1561. DOI:

59. Tian G., Gu Z. J., Zhou L. J., Yin W. Y., Liu X. X., Yan L., Jin S., Ren W. L., Xing G. M., Li S. J., Zhao Y. L. Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Adv. Mater., 2012, vol. 24, pp. 1226–1231. DOI:

60. Wang H., Liu Z., Wang S., Dong C., Gong X., Zhao P., Chang J. MC540 and Upconverting Nanocrystal Coloaded Polymeric Liposome for Near-Infrared Light-Triggered Photodynamic Therapy and Cell Fluorescent Imaging. ACS Appl. Mater. Interfaces, 2014. vol. 6, pp. 3219–3225. DOI:

61. Shen J., Li Z. Q., Chen Y. R., Chen X. H., Chen Y. W., Sun Z., Huang S. M. Infl uence of SiO2 layer thickness on plasmon enhanced upconversion in hybrid Ag/SiO2/NaYF4:Yb,Er,Gd structures. Applied Surface Science, 2013, vol. 270, pp. 712–717. DOI:

62. Ding Y., Zhang X., Gao H., Xu S., Wei C., Zhao Y. Plasmonic enhanced upconversion luminescence of β-NaYF4:Yb3+/Er3+ with Ag@SiO2 core-shell nanoparticles. Journal of Luminescence, 2014, vol. 147, pp. 72–76. DOI:

63. Joshi P., Ahmadov T. O., Wang P., Zhang P. Singlet oxygen generation under NIR light and visible light excitations of photosensitizers on upconversion nanoparticle surface. RSC Advances, 2015. vol. 5, no. 83, pp. 67892–67895. DOI:

64. Wang X., Liu K., Yang G., Cheng L., He L., Liu Y., Li Y., Guo L., Liu Z. Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. Nanoscale, 2014, vol. 6, pp. 9198. DOI:

65. Grebenik E. A., Generalova A. N., Nechaev A. V., Khaydukov E. V., Mironova K. E., Stremovsky O. A., Lebedenko E. N., Zvyagin A.V., Deev S. M. Specifi c visualization of tumor cells using anti-Stokes nanophosphors. Acta Naturae (English edition), 2014, vol. 6, no. 4 (23), pp. 48–53.

66. Wang D., Xue B., Kong X., Tu L., Liu X., Zhang Y., Chang Y., Luo Y., Zhao H., Zhang H. 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fl uorescence imaging. Nanoscale, 2015. vol. 7, pp. 190197. DOI:

67. Xia L., Kong X., Liu X., Tu L., Zhang Y., Chang Y., Liu K., Shen D., Zhao H., Zhang H. An upconversion nanoparticle – Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy. Biomaterials, 2014, vol. 35, pp. 4146–4156. DOI:

68. Zhang L., Zeng L., Pan Y., Luo S., Ren W., Gong A., Ma X., Liang H., Lu G., Wu A. Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and nearinfrared-responsive photodynamic therapy in cancers. Biomaterials, 2015, vol. 44, pp. 82–90. DOI:

69. Zeng L. Y., Pan Y. W., Tian Y., Wang X., Ren W. Z., Wang S. J., Lu G. M., Wu A. G. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials, 2015, vol. 57, pp. 93–106. DOI:

70. Lv R., Zhong C., Li R., Yang P., He F., Gai S., Hou Z., Yang G., Lin J. A Multifunctional Anticancer Platform for Multimodal Imaging and Visible Light Driven Photodynamic/Photothermal Therapy. Chem. Mater., 2015, vol. 27, pp. 1751–69. DOI:

71. Stella B., Arpicco S., Peracchia M. T., Desmaële D., Hoebeke J., Renoir M., D’Angelo J., Cattel L., Couvreur P. Design of folic acid-conjugated nanoparticles for drug targeting. Journal of pharmaceutical sciences, 2000, vol. 89, no. 11, pp. 1452–1464.

72. Sun C., Sze R., Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. Journal of Biomedical Materials Research Part A, 2006. vol. 78, no. 3, pp. 550–557. DOI:

73. Fan W., Shen B., Bu W., Chen F., He Q., Zhao K., Zhang S., Zhou L., Peng W., Xiao Q., Ni D., Liu J., Shi J. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials, 2014, vol. 35, pp. 8992–9002. DOI:

74. Park Y. I., Kim H. M., Kim J. H., Moon K. C., Yoo B., Lee K. T., Lee N., Choi Y., Park W., Ling D., Na K., Moon W. K., Choi S. H., Park H. S., Yoon S.-Y., Suh Y. D., Lee S. H., Hyeon T. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater., 2012, vol. 24, pp. 5755–5791. DOI:

75. Wang C., Cheng L., Liu Y., Wang X., Ma X., Deng Z., Li Y., Liu Z. Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. Adv. Funct. Mater., 2013, vol. 23, pp. 3077–3086. DOI:

76. Cui S., Chen H., Zhu H., Tian J., Chi X., Qian Z., Achilefu S., Gu Y. Amphiphilic chitosan modifi ed upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light. J. Mater. Chem., 2012, vol. 22, pp. 4861–4873. DOI:

Short text (in English): 
Full text (in Russian):