For citation:
Plotnikov P. K., Melnikov L. A., Mazhirina J. A. On the Physical Basis of Ultra-High-Frequency Electromagnetic Wave Gyroscopes Based on the Sagnac Effect. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 3, pp. 193-201. DOI: 10.18500/1817-3020-2020-20-3-193-201
On the Physical Basis of Ultra-High-Frequency Electromagnetic Wave Gyroscopes Based on the Sagnac Effect
Background and Objectives: In the present paper the physical backgrounds of three types of microwave gyroscopes are presented. Materials and Methods: Using the relativistic approach the relations for output characteristics are derived to determine the main parameters and properties of the microwave gyro devices: voltage tuned magnetron (mitron) and microwave gyros based on the resonant cavity, and for microwave gyro with coil. Results and Conclusion: The results can be used to determine the main parameters of these devices and their properties. The calculated parameters are compared with the parameters and properties of Laser Gyros, Fiber Optics Gyros and with other types of gyros. The discussion of their realizations issues and subsequent applications at the moving objects is given.
- Grammel R. Giroskop. Ego teoriya i primeneniya [The gyro. Theory and applications]. Moscow, Izd-vo inostr. lit., 1952, vol. 1. 359 p.; vol. 2. 319 p. (in Russian).
- Maleev P. I. Novye tipy giroskopov [New kinds of gyros]. Leningrad, Sudostroenie Publ., 1971. 160 p. (in Russian).
- Lodge O. J. Aberration Problem. A Discussion concerning the Motion of the Ether near the Earth, and concerning the connection between Ether and Cross Matter, with Some New Experiments. Phil. Trans. A, 1893, vol. 184, pp. 727–804.
- Sagnac G. L’éther lumineux démontré par l’éffect du vent rélatif d’éther dans un interférométre en rotation uniforme. C.R. Acad. Sci., 1913, vol. 157, pp. 708–710.
- Krobka N. I. Quantrum micromechanics: the gyro which use the de-Broglie waves and quantum properties of superfluids. The trends and state of developments. Proc. of 16th International Conference on Integrated Navigation Systems. St. Petersburg, TsNII “Elektropribor”, 2009, pp. 124–137 (in Russian).
- Hromyh A. M. Ring cavity laser in rotated coordinate. JETP, 1966, vol. 50, no. 1, pp. 281–282 (in Russian).
- Post E. J. Sagnac Effect. Rev. Mod. Phys., 1967, vol. 39, no. 2, pp. 475–493.
- Vavilov S. I. Eksperimental’nye osnovaniya teorii otnositel’nosti. Sobranie sochinenij. T. 4 [Experimental foundations of relativity theory. Vol. 4]. Moscow, Izd-vo AN SSSR, 1956, pp. 13–110 (in Russian).
- Frankfurt U. I., Frenk A. M. Optika dvizhushchikhsya tel [Optics of moving]. Мoscow, Nauka Publ., 1972. 212 p. (in Russian).
- Anderson R., Bilger H. R., Stedman G. E. ‘‘Sagnac’’ effect: A century of Earth-rotated interferometers. Am. J. Phys., 1994, vol. 62, pp. 975–985. DOI: https://doi.org/10.1119/1.17656
- Malykin G. B. Earlier investigations of Sagnac effect. Sov. Phys. Uspekhi, 1997, vol. 167, pp. 337–342. DOI: https://doi.org/10.3367/UFNr.0167.199703i.0337
- Malykin G. B. Correct and noncorrect explanations. Sov. Phys. Uspekhi, 2000, vol. 170, no. 12, pp. 1325–1349 (in Russian). DOI: https://doi.org/10.3367/UFNr.0170.200012c.1325
- Loukianov D., Sorg H., Rodloff R., Stieler B. Optical Gyros and Their Application. North Atlantic Treaty Organization, 1999. 336 p. DOI: https://doi.org/10.14339/RTO-AG-339
- Vugalter G. A., Malykin G. B. Sagnac effect in the ring interferometers with slow waves. Sov. Radielectronics, Radiophysics, 1999, vol. XLII, no. 4, pp. 373–382 (in Russian).
- Fesenthal Jr., Harry D. Microwave gyro. Patent USA, no. 3861220, 1973.
- Speller J. B. Relativistic inertial reference device. Patent USA, no. 3395270, 1968.
- Dressler E. R. Angular rotation detection system utilizing the displactment of electron bam. Patent USA, no. 3218871, 1965.
- Karapetyan G. G. Microwave gyroscope – novel rotation sensor. Microwave and Optical Tech. Lett., 2000, vol. 37, no. 4, pp. 255–257. DOI: https://doi.org/10.1002/1098-2760(20001120)27:4%3C255::AID-MOP10%3E3.0.CO;2-X
- Stancil D. D. Theory of Magnitostatic Waves in Moving Ferrite Films and Applications to Rotation Rate Sensing. IEEE Trans. MTT, 1989, vol. 37, no. 5, pp. 851–859. DOI: https://doi.org/10.1109/22.17451
- Plotnikov P. K. Ring resonant microwave gyro. Patent RF, no. 2207511, 2003 (in Russian).
- Petrov B. M. Elektrodinamika i rasprostraneniye radiovoln [Electrodynamics and radio wave propagation]. 2nd ed. Moscow, Goryachaya liniya-Telekom Publ., 2004. 558 p.
- Melnikov L. A., Plotnikov P. K. The perspective of microwave gyros. Symp. Gyro Tech. Lett., 2000, vol. 27, no. 4, pp. 255–257.
- Plotnikov P. K., Melnikov L. A. Ring resonant microwavw gyro. Patent RF, no. 111632, 2011 (in Russian).
- Melnikov L. A., Plotnikov P. K. Resonsnant microwave gyro. Patent RF, no. 116999, 2012 (in Russian).
- Plotnikoiv P. K. Microwave resonant gyro. Patent RF, no. 2258908, 2005 (in Russian).
- Plotnikov P. K., Sivyakov B. K., Slapovskaya Yu. P. Mathematical modeling of the operation of microwave resonant gyro. Proc. of 16th International Conference on Integrated Navigation Systems. St. Petersburg, TsNII “Elektropribor”, 2007, pp. 44–46 (in Russian).
- Plotnikov P. K. Ring microwave gyro. Patent RF, no. 2090842, 1997 (in Russian).
- Bershtein I. L. Sagnac experiment at microwaves. Proceeding of RAS (doclady), 1950, vol. 75, no. 5, pp. 475–493 (in Russian).
- Plotnikov P. K. Singlecavity gyro-magnetron. Patent RF, no. 163266, 2016 (in Russian).
- Plotnikov P. K., Melnikov L. A., Naumov S. G. Singlemagnetron gyro with reversible magnetic induction. Patent RF, no. 174674, 2017 (in Russian).
- 2803 reads