Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Plotnikov P. K., Melnikov L. A., Mazhirina J. A. On the Physical Basis of Ultra-High-Frequency Electromagnetic Wave Gyroscopes Based on the Sagnac Effect. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 3, pp. 193-201. DOI: 10.18500/1817-3020-2020-20-3-193-201

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.08.2020
Full text:
(downloads: 281)
Language: 
Russian
UDC: 
681.2.083:681.2.084

On the Physical Basis of Ultra-High-Frequency Electromagnetic Wave Gyroscopes Based on the Sagnac Effect

Autors: 
Plotnikov Petr K., Yuri Gagarin State Technical University of Saratov
Melnikov Leonid Arkad'evich, Yuri Gagarin State Technical University of Saratov
Mazhirina Julia Aleksandrovna, Yuri Gagarin State Technical University of Saratov
Abstract: 

Background and Objectives: In the present paper the physical backgrounds of three types of microwave gyroscopes are presented. Materials and Methods: Using the relativistic approach the relations for output characteristics are derived to determine the main parameters and properties of the microwave gyro devices: voltage tuned magnetron (mitron) and microwave gyros based on the resonant cavity, and for microwave gyro with coil. Results and Conclusion: The results can be used to determine the main parameters of these devices and their properties. The calculated parameters are compared with the parameters and properties of Laser Gyros, Fiber Optics Gyros and with other types of gyros. The discussion of their realizations issues and subsequent applications at the moving objects is given.

Reference: 
  1. Grammel R. Giroskop. Ego teoriya i primeneniya [The gyro. Theory and applications]. Moscow, Izd-vo inostr. lit., 1952, vol. 1. 359 p.; vol. 2. 319 p. (in Russian).
  2. Maleev P. I. Novye tipy giroskopov [New kinds of gyros]. Leningrad, Sudostroenie Publ., 1971. 160 p. (in Russian).
  3. Lodge O. J. Aberration Problem. A Discussion concerning the Motion of the Ether near the Earth, and concerning the connection between Ether and Cross Matter, with Some New Experiments. Phil. Trans. A, 1893, vol. 184, pp. 727–804.
  4. Sagnac G. L’éther lumineux démontré par l’éffect du vent rélatif d’éther dans un interférométre en rotation uniforme. C.R. Acad. Sci., 1913, vol. 157, pp. 708–710.
  5. Krobka N. I. Quantrum micromechanics: the gyro which use the de-Broglie waves and quantum properties of superfluids. The trends and state of developments. Proc. of 16th International Conference on Integrated Navigation Systems. St. Petersburg, TsNII “Elektropribor”, 2009, pp. 124–137 (in Russian).
  6. Hromyh A. M. Ring cavity laser in rotated coordinate. JETP, 1966, vol. 50, no. 1, pp. 281–282 (in Russian).
  7. Post E. J. Sagnac Effect. Rev. Mod. Phys., 1967, vol. 39, no. 2, pp. 475–493.
  8. Vavilov S. I. Eksperimental’nye osnovaniya teorii otnositel’nosti. Sobranie sochinenij. T. 4 [Experimental foundations of relativity theory. Vol. 4]. Moscow, Izd-vo AN SSSR, 1956, pp. 13–110 (in Russian).
  9. Frankfurt U. I., Frenk A. M. Optika dvizhushchikhsya tel [Optics of moving]. Мoscow, Nauka Publ., 1972. 212 p. (in Russian).
  10. Anderson R., Bilger H. R., Stedman G. E. ‘‘Sagnac’’ effect: A century of Earth-rotated interferometers. Am. J. Phys., 1994, vol. 62, pp. 975–985. DOI: https://doi.org/10.1119/1.17656
  11. Malykin G. B. Earlier investigations of Sagnac effect. Sov. Phys. Uspekhi, 1997, vol. 167, pp. 337–342. DOI: https://doi.org/10.3367/UFNr.0167.199703i.0337
  12. Malykin G. B. Correct and noncorrect explanations. Sov. Phys. Uspekhi, 2000, vol. 170, no. 12, pp. 1325–1349 (in Russian). DOI: https://doi.org/10.3367/UFNr.0170.200012c.1325
  13. Loukianov D., Sorg H., Rodloff R., Stieler B. Optical Gyros and Their Application. North Atlantic Treaty Organization, 1999. 336 p. DOI: https://doi.org/10.14339/RTO-AG-339
  14. Vugalter G. A., Malykin G. B. Sagnac effect in the ring interferometers with slow waves. Sov. Radielectronics, Radiophysics, 1999, vol. XLII, no. 4, pp. 373–382 (in Russian).
  15. Fesenthal Jr., Harry D. Microwave gyro. Patent USA, no. 3861220, 1973.
  16. Speller J. B. Relativistic inertial reference device. Patent USA, no. 3395270, 1968.
  17. Dressler E. R. Angular rotation detection system utilizing the displactment of electron bam. Patent USA, no. 3218871, 1965.
  18. Karapetyan G. G. Microwave gyroscope – novel rotation sensor. Microwave and Optical Tech. Lett., 2000, vol. 37, no. 4, pp. 255–257. DOI: https://doi.org/10.1002/1098-2760(20001120)27:4%3C255::AID-MOP10%3E3.0.CO;2-X
  19. Stancil D. D. Theory of Magnitostatic Waves in Moving Ferrite Films and Applications to Rotation Rate Sensing. IEEE Trans. MTT, 1989, vol. 37, no. 5, pp. 851–859. DOI: https://doi.org/10.1109/22.17451
  20. Plotnikov P. K. Ring resonant microwave gyro. Patent RF, no. 2207511, 2003 (in Russian).
  21. Petrov B. M. Elektrodinamika i rasprostraneniye radiovoln [Electrodynamics and radio wave propagation]. 2nd ed. Moscow, Goryachaya liniya-Telekom Publ., 2004. 558 p.
  22. Melnikov L. A., Plotnikov P. K. The perspective of microwave gyros. Symp. Gyro Tech. Lett., 2000, vol. 27, no. 4, pp. 255–257.
  23. Plotnikov P. K., Melnikov L. A. Ring resonant microwavw gyro. Patent RF, no. 111632, 2011 (in Russian).
  24. Melnikov L. A., Plotnikov P. K. Resonsnant microwave gyro. Patent RF, no. 116999, 2012 (in Russian).
  25. Plotnikoiv P. K. Microwave resonant gyro. Patent RF, no. 2258908, 2005 (in Russian).
  26. Plotnikov P. K., Sivyakov B. K., Slapovskaya Yu. P. Mathematical modeling of the operation of microwave resonant gyro. Proc. of 16th International Conference on Integrated Navigation Systems. St. Petersburg, TsNII “Elektropribor”, 2007, pp. 44–46 (in Russian).
  27. Plotnikov P. K. Ring microwave gyro. Patent RF, no. 2090842, 1997 (in Russian).
  28. Bershtein I. L. Sagnac experiment at microwaves. Proceeding of RAS (doclady), 1950, vol. 75, no. 5, pp. 475–493 (in Russian).
  29. Plotnikov P. K. Singlecavity gyro-magnetron. Patent RF, no. 163266, 2016 (in Russian).
  30. Plotnikov P. K., Melnikov L. A., Naumov S. G. Singlemagnetron gyro with reversible magnetic induction. Patent RF, no. 174674, 2017 (in Russian).