Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Davidovich M. V. Nonlinear tunneling of electromagnetic wave through a plasma layer. Izvestiya of Sarat. Univ. Physics. , 2021, vol. 21, iss. 2, pp. 116-132. DOI: 10.18500/1817-3020-2021-21-2-116-132

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 131)
Article type: 

Nonlinear tunneling of electromagnetic wave through a plasma layer

Davidovich Mikhail Vladimirovich, Saratov State University

Background and Objectives: The propagation of a strong plane electromagnetic wave from a vacuum through a limited plasma layer is considered, taking into account non-linearity under tunneling and transparency conditions. The temperature dependence is not taken into account. The non-linearity is taken into account phenomenologically as the dependence of the plasma frequency and collision frequency on the field averaged over the period squared. Conclusion: Coupled stationary nonlinear integral equations for the field harmonics, as well as a nonlinear integral equation for a non-stationary process, are obtained. The speed and time of tunneling in linear and nonlinear cases, the field distribution and the third harmonic generation coefficient are determined. It is shown that tunneling takes longer than the passage of a transparent layer, and the process of nonlinear tunneling is a longer process compared to linear, while in all cases the time of the wave passage is longer when passing
the structure at the speed of light.

This work was supported by the Russian Science Foundation (project No. 16-19-10033) and by the Ministry of Science and Higher Education of the Russian Federation in the framework of the State task (project No. FSRR-2020-0004).
  1. Bass F. G., Gurevich Yu. G. Goryachie electrony i sil’nye electromagnitnye volny v plazme poluprovodnikov i gazovogo razryada [Hot electrons and strong electromagnetic waves in the plasma of semiconductors and gas discharge]. Moscow, Nauka Publ., 1975. 400 p. (in Russian).
  2. Akhiezer A. I., Akhiezer I. A., Polovin R. V., Sitenko A. G., Stepanov K. N. Electrodinamika plazmy [Electrodynamics of Plasma]. Moscow, Nauka Publ., 1974. 719 p. (in Russian).
  3. Ginzburg V. L. Rasprostrsanenie electromagnitnykh voln v plazme [Propagation of Electromagnetic Waves in Plasma]. Moscow, Fizmatgiz Publ., 1960. 552 p. (in Russian).
  4. Gurevich A. V., Shvartsburg A. B. Nelineinaya teoriya rasprostraneniya radiovoln v ionosfere [Nonlinear Theory of Radio Wave Propagation in the Ionosphere]. Moscow, Fizmatgiz Publ., 1973. 272 p. (in Russian).
  5. Gershman B. N. Dinamika ionosfernoi plazmy [Dynamics of Ionospheric Plasma]. Moscow, Nauka Publ., 1974. 257 p. (in Russian).
  6. Bass F. G. Kinetic theory of propagation of strong electromagnetic waves in semiconductors and in plasma. Sov. Phys. JETP, 1965, vol. 20, no. 4, pp. 894‒905.
  7. Bass F. G., Gurevich Yu. G., Kvimsadze M. V. Propagation of strong electromagnetic waves in a two-component plasma. Sov. Phys. JETP, 1971, vol. 33, no. 8, pp. 343‒348.
  8. Sodha M. S., Kaw P. K. Third Harmonic of Current Density in a Plasma. Phys. Fluids, 1965, vol. 8, pp. 1402‒1404. DOI: 10.1063/1.1761423
  9. Jancel R. Analysis of non-linear wave phenomena in weakly dissipative plasmas. Acta Physic Academiae Scientiarum Hungaricae, 1976, vol. 40, no. 3, pp. 177‒209.
  10. Kaplan A. E. Theory of hysteresis refl ection and refraction of light by a boundary of a nonlinear medium. JETP, 1977, vol. 45, no. 5, pp. 896‒905.
  11. Butylkin V. S., Kaplan A. E., Khronopulo Yu. G. Non-linear Polarizability in Resonant Interactions of an Electromagnetic Field with Matter. Sov. Phys. JETP, 1971, vol. 32, no. 3, pp. 501‒507.
  12. Butylkin V. S., Kaplan A. E., Khronopulo Yu. G. Some Features of Self-action of Light in Absorbing Media and Conditions for Observing Self-focusing Due to Resonant Absorption. Sov. Phys. JETP, 1972, vol. 34, no. 2, pp. 276‒283.
  13. Kaplan A. E. Exact theory of relaxation of two-level systems in a strong nonmonochromatic fi eld. Sov. Phys. JETP, 1974, vol. 38, no. 4, pp. 705‒711.
  14. Kaplan A. E. Dynamics of a two-level system in a strong resonant fi eld with variable frequency and amplitude. Sov. Phys. JETP, 1975, vol. 41, no. 3, pp. 409‒413.
  15. Kaplan A. E. Two-level system in the fi eld of a high-power pulse of arbitrary duration. Sov. J. Quantum Electron., 1976, vol. 6, no. 6, pp. 728–730.
  16. Kozlov S. A., Sazonov S. V. Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media. JETP, 1997, vol. 84, no. 2, pp. 221‒228. DOI: 10.1134/1.558109
  17. Keldysh L. V. Diagram Technique for Nonequilibrium Processes. Sov. Phys. JETP, 1965, vol. 20, no. 4, pp. 1018‒1023.
  18. Akhiezer A. I., Akhiezer I. A. Electromagnetizm i electromagnitnye vilny [Electromagnetism and Electromagnetic Waves]. Moscow, Vysshaya Shkola Publ., 1985. 504 p. (in Russian).
  19. Landau L. D., Lifshitz E. M. Electrodynamics of Continuous Media. Oxford, UK, Pergamon Press, 1960. 417 p.
  20. Davidovich M. V. On the Electromagnetic Energy Density and Energy Transfer Rate in a Medium with Dispersion due to Conduction. Technical Physics, 2010, vol. 55, no. 5, pp. 630–635. DOI: 10.1134/S1063784210050063
  21. Khurgin Ya. I., Yakovlev V. P. Finitnye funktzii v fi zike i tekhnike [Finite Functions in Physics and Technics]. Moscow, Nauka Publ., 1971. 408 p. (in Russian).
  22. Khalfi n L. A. The quantum theory of wave packet scattering, the causality principle, and superlight tunneling. Phys. Usp., 1996, vol. 39, no. 6, pp. 639–642.
  23. Vainstein L. A., Wakman D. E. Razdelenie chastot v teorii kolebanii i voln [Frequency Division in the Theory of Vibrations and Waves]. Moscow, Nauka Publ., 1983. 288 p. (in Russian).
  24. Strelkov G. M. A complex radio signal in ionospheric plasma. J. Comm. Tech. Electron., 2008, vol. 53, no. 9, pp. 1034‒1043.
  25. Davidovich M. V., Stefyuk Yu. V. Nonlinear passage of an electromagnetic wave through a layer with quadratic and fractional-polynomial dependences of permittivity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, no. 3, pp. 160‒177.
  26. Davidovich M. V., Aleksutova S. V., Shilin I. V., Borisov V. S. Diffraction of Flat Electromagnrtic Wave on Non-Linear Dielectric Slab. Izv. Saratov Univ. (N. S.), Ser. Physics, 2007, vol. 7, iss. 1, pp. 32‒40 (in Russian).
  27. Davidovich M. V. On the Hartman paradox, electromagnetic wave tunneling and supraluminal velocities (comment on the paper “Tunneling of electromagnetic waves: paradoxes and prospects” by A. B. Shvartsburg). Phys. Uspekhi, 2009, vol. 52, no. 4, pp. 415–418. DOI: 10.3367/UFNr.0179.200904o.0443
  28. Davidovich M. V. On Times and Speeds of Time-Dependent Quantum and Electromagnetic Tunneling. JETP, 2020, vol. 130, pp. 35–51. https://doi.org/10.1134/S1063776119120161
  29. Davidovich M. V. The speed of energy transfer by a fl at monochromatic electromagnetic wave through a layer of matter. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2020, vol. 24, no. 1, pp. 22‒40.
  30. Hartman T. E. Tunneling of a Wave Packet. J. Appl. Phys., 1962, vol. 33, no. 12, pp. 3427‒3433. https://dx.doi.org/10.1063/1.1702424
  31. Shvartsburg A. B. Tunneling of electromagnetic waves: paradoxes and prospects. Phys. Usp., 2007, vol. 50, no. 1, pp. 37–51.
  32. Steinberg A. M. Conditional probabilities in quantum theory and the tunneling-time controversy. Phys. Rev., 1995, vol. A52, no. 1, pp. 32‒42. DOI: 10.1103/PhysRevA.52.32
  33. Chiao R. Y., Kozhekin A. E., Kurizki G. Tachyonlike excitations in inverted two-level media. Phys. Rev. Lett., 1996, vol. 77, pp. 1254‒1257.