Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ermakov A. V., Lengert E. V., Venig S. B. Nanomedicine and Drug Delivery Strategies for Theranostics Applications. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 2, pp. 116-124. DOI: 10.18500/1817-3020-2020-20-2-116-124

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.06.2020
Full text(En):
(downloads: 465)
Language: 
English
UDC: 
577

Nanomedicine and Drug Delivery Strategies for Theranostics Applications

Autors: 
Ermakov Alexey Vadimovich, Saratov State University
Lengert Ekaterina Vladimirovna, Saratov State Medical University named after V. I. Razumovsky
Venig Sergey Borisovich, Saratov State University
Abstract: 

Background and Objectives: Nanomedicine and drug delivery systems are a relatively new but rapidly developing branch of science, which investigate materials in the nano- and microscale range as diagnostic tools or carrier for delivery of therapeutic agents to specific targets within the body in a controlled manner. As far as the systemic administration faces a range of problems that cannot be solved by traditional approaches, it becomes extremely relevant to develop novel therapeutic options. Results: In this paper we provided information about the most interesting and promising strategies from our point of view that optimize the drug delivery process using various compositions of nano- and microcarriers of different nature and design, special physicochemical amplifiers, various devices, and methods. The current review briefly presents the latest advances in the field of nanomedicine and drug delivery systems driven by impressive recent results in the field of nanomaterials, drug carriers of different compositions, specific physicochemical amplifiers, various devices and methods. Few basic routes for drug delivery in vivo including injections, implantation and transdermal delivery open up a new avenue for an improved topical medical treatment which is considered and compared to each other in the current review. All of these routes offer certain advantages of terms drug absorption, targeting, prolongation, spatiotemporal accuracy, reduction of dosage and many others that must be taken into account to provide a correct approach for the treatment of a specific disease. Conclusion: Invasive and non-invasive implantation of drug delivery carriers and devices are reviewed together with transdermal routes leading to effective absorption of drugs with minimal side effects. The innovative approaches to drug delivery discussed here open venue for effective treatment of a wide range of diseases, especially chronic ones, that cannot be defeated by traditional approaches. Although transdermal delivery offers a promising non-invasive way to treat a variety of diseases, chronic illnesses can be treated more effectively by implantation of drug delivery devices with a bidirectional connection that in the future can drastically improve the quality of life. Diversity of emerging technologies in microelectronics, sensors and biomaterials leads to dramatic changes in the medical industry and appearance of new systems providing medical treatment in theranostics fashion.

Reference: 
  1. Al-Ahmady Z. S., Chaloin O., Kostarelos K. Monoclonal antibody-targeted, temperature-sensitive liposomes: In vivo tumor chemotherapeutics in combination with mild hyperthermia. J. Control. Release, 2014, vol. 196, pp. 332–343.
  2. Al-Ahmady Z. S., Hadjidemetriou M., Gubbins J., Kostarelos K. Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes. J. Control. Release, 2018, vol. 276, pp. 157–167.
  3. Park E.-J., Kim S.-W., Yoon C., Kim Y., Kim J. S. Disturbance of ion environment and immune regulation following biodistribution of magnetic iron oxide nanoparticles injected intravenously. Toxicol. Lett., 2016, vol. 243, pp. 67–77.
  4. Xie P., Yang S.-T., He T., Yang S., Tang X.-H. Bioaccumulation and Toxicity of Carbon Nanoparticles Suspension Injection in Intravenously Exposed Mice. Int. J. Mol. Sci., 2017, vol. 18, pp. 2562.
  5. Sonavane G., Tomoda K., Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surfaces B Biointerfaces, 2008, vol. 66, pp. 274–280.
  6. Szebeni J. Complement activation-related pseudoallergy: A stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol., 2014, vol. 61, pp. 163–173.
  7. Moghimi S. M., Wibroe P. P., Helvig S. Y., Farhangrazi Z. S., Hunter A. C. Genomic perspectives in inter-individual adverse responses following nanomedicine administration: The way forward. Adv. Drug Deliv. Rev., 2012, vol. 64, pp. 1385–1393.
  8. Cui M.-Y., Dong Z., Chan T., Luo Y., Huang K., Xu L., Li Z.-P., Li X. Effect of Intravenous Injection Site on Contrast Enhancement of CT Thorax – Comparison Between Injection on Two Sides of Cubital. Curr. Med. Imaging Rev., 2017, vol. 14, pp. 124–128.
  9. Khan A. N., Ermakov A., Sukhorukov G., Hao Y. Radio frequency controlled wireless drug delivery devices. Appl. Phys. Rev., 2019, vol. 6, 041301.
  10. Din F. U., Aman W., Ullah I., Qureshi O. S., Mustapha O., Shafi que S., Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, vol. 12, pp. 7291–7309.
  11. Ward M. A., Georgiou T. K. Thermoresponsive Polymers for Biomedical Applications. Polymers (Basel), 2011, vol. 3, pp. 1215–1242.
  12. Bikram M., West J. L. Thermo-responsive systems for controlled drug delivery. Expert Opin. Drug Deliv., 2008, vol. 5, pp. 1077–1091.
  13. Almeida H., Amaral M. H., Lobão P. Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. J. Appl. Pharm. Sci., 2012, vol. 5, pp. 22–32.
  14. Liu J., Huang Y., Kumar A., Tan A., Jin S., Mozhi A., Liang X.-J. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, vol. 32, pp. 693–710.
  15. Zhou Y., Ye H., Chen Y., Zhu R., Yin L. Photoresponsive Drug/Gene Delivery Systems. Biomacromolecules, 2018, vol. 19, pp. 1840–1857.
  16. Cho H. J., Chung M., Shim M. S. Engineered photoresponsive materials for near-infrared-triggered drug delivery. J. Ind. Eng. Chem., 2015, vol. 31, pp. 15–25.
  17. Lee C. H., Kim H., Harburg D. V., Park G., Ma Y., Pan T., Kim J. S., Lee N. Y., Kim B. H., Jang K.-I., Kang S.-K., Huang Y., Kim J., Lee K.-M., Leal C., Rogers J. A. Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Mater., 2015, vol. 7, pp. e227–e227.
  18. Farra R., Sheppard N. F., McCabe L., Neer R. M., Anderson J. M., Santini J. T., Cima M. J., Langer R. First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip. Sci. Transl. Med., 2012, vol. 4, pp. 122ra21122ra21.
  19. Ochoa M., Mousoulis C., Ziaie B. Polymeric microdevices for transdermal and subcutaneous drug delivery. Adv. Drug Deliv. Rev., 2012, vol. 64, pp. 1603–1616.
  20. Vikram Singh A., Sitti M. Targeted Drug Delivery and Imaging Using Mobile Milli/Microrobots: A Promising Future Towards Theranostic Pharmaceutical Design. Curr. Pharm. Des., 2016, vol. 22, pp. 1418–1428.
  21. Fusco S., Huang H.-W., Peyer K. E., Peters C., Häberli M., Ulbers A., Spyrogianni A., Pellicer E., Sort J., Pratsinis S. E., Nelson B. J., Sakar M. S., Pané S. Shape-Switching Microrobots for Medical Applications: The Influence of Shape in Drug Delivery and Locomotion. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 6803–6811.
  22. Beccani M., Di Natali C., Aiello G., Benjamin C., Susilo E., Valdastri P. A Magnetic Drug Delivery Capsule Based on a Coil Actuation Mechanism. Procedia Eng., 2015, vol. 120, pp. 53–56.
  23. Stewart F., Cox B., Vorstius J., Verbeni A., Qiu Y., Cochran S. Capsule-based ultrasound-mediated targeted gastrointestinal drug delivery. 2015 IEEE International Ultrasonics Symposium (IUS). Taipei, 2015, pp. 1–4.
  24. Vinodini Ramesh M., Mohan K. S., Nadarajan D. An inbody wireless communication system for targeted drug delivery: Design and simulation. 2014 International Symposium on Technology Management and Emerging Technologies. Bundung, 2014, pp. 56–61.
  25. Lengert E., Saveleva M., Abalymov A., Atkin V., Wuytens P. C., Kamyshinsky R., Vasiliev A. L., Gorin D. A., Sukhorukov G. B., Skirtach A. G., Parakhonskiy B. Silver Alginate Hydrogel Micro- and Nanocontainers for Theranostics: Synthesis, Encapsulation, Remote Release, and Detection. ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 21949–21958.
  26. Ermakov A., Lim S. H., Gorelik S., Kauling A. P., de Oliveira R. V. B., Castro Neto A. H., Glukhovskoy E., Gorin D. A., Sukhorukov G. B., Kiryukhin M. V. PolyelectrolyteGraphene Oxide Multilayer Composites for Array of Microchambers which are Mechanically Robust and Responsive to NIR Light. Macromol. Rapid Commun., 2019, vol. 40, pp. 1700868.
  27. Sindeeva O. A., Gusliakova O. I., Inozemtseva O. A., Abdurashitov A. S., Brodovskaya E. P., Gai M., Tuchin V. V., Gorin D. A., Sukhorukov G. B. Effect of a Controlled Release of Epinephrine Hydrochloride from PLGA Microchamber Array: In Vivo Studies. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 37855–37864.
  28. Zykova Y., Kudryavtseva V., Gai M., Kozelskaya A., Frueh J., Sukhorukov G., Tverdokhlebov S. Free-standing microchamber arrays as a biodegradable drug depot system for implant coatings. Eur. Polym. J., 2019, vol. 114, pp. 72–80.
  29. Kim V. P., Ermakov A. V., Glukhovskoy E. G., Rakhnyanskaya A. A., Gulyaev Y. V., Cherepenin V. A., Taranov I. V., Kormakova P. A., Potapenkov K. V., Usmanov N. N., Saletsky A. M., Koksharov Y. A., Khomutov G. B. Planar nanosystems on the basis of complexes formed by amphiphilic polyamine, magnetite nanoparticles, and DNA molecules. Nanotechnologies Russ., 2014, vol. 9, pp. 280–287.
  30. Lengert E., Parakhonskiy B., Khalenkow D., Zečić A., Vangheel M., Monje Moreno J. M., Braeckman B. P., Skirtach A. G. Laser-induced remote release in vivo in C. elegans from novel silver nanoparticles-alginate hydrogel shells. Nanoscale, 2018, vol. 10, pp. 17249–17256.
  31. Yan J., Miao Y., Tan H., Zhou T., Ling Z., Chen Y., Xing X., Hu X. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater. Sci. Eng. C, 2016, vol. 63, pp. 274–284.
  32. Alessandri G., Coccè V., Pastorino F., Paroni R., Dei Cas M., Restelli F., Pollo B., Gatti L., Tremolada C., Berenzi A., Parati E., Brini A. T., Bondiolotti G., Ponzoni M., Pessina A. Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. J. Control. Release, 2019, vol. 302, pp. 2–18.
  33. Saveleva M. S., Ivanov A. N., Kurtukova M. O., Atkin V. S., Ivanova A. G., Lyubun G. P., Martyukova A. V., Cherevko E. I., Sargsyan A. K., Fedonnikov A. S., Norkin I. A., Skirtach A. G., Gorin D. A., Parakhonskiy B. V. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. Mater. Sci. Eng. C, 2018, vol. 85, pp. 57–67.
  34. Dvir T., Timko B. P., Kohane D. S., Langer R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol., 2011, vol. 6, pp. 13–22.
  35. Azevedo H. S., Pashkuleva I. Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv. Drug Deliv. Rev., 2015, vol. 94, pp. 63–76.
  36. Ramachandran R., Junnuthula V. R., Gowd G. S., Ashokan A., Thomas J., Peethambaran R., Thomas A., Unni A. K. K., Panikar D., Nair S. V., Koyakutty M. Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci. Rep., 2017, vol. 7, pp. 43271–43281.
  37. Takehara H., Katsuragi Y., Ohta Y., Motoyama M., Takehara H., Noda T., Sasagawa K., Tokuda T., Ohta J. Implantable micro-optical semiconductor devices for optical theranostics in deep tissue. Appl. Phys. Express, 2016, vol. 9, pp. 047001.
  38. Zhang X., Hu W., Li J., Tao L., Wei Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. (Camb)., 2012, vol. 1, pp. 62–68.
  39. Song H. S., Kwon O. S., Kim J.-H., Conde J., Artzi N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens. Bioelectron., 2017, vol. 89, pp. 187–200.
  40. Gray M., Meehan J., Ward C., Langdon S. P., Kunkler I. H., Murray A., Argyle D. Implantable biosensors and their contribution to the future of precision medicine. Vet. J., 2018, vol. 239, pp. 21–29.
  41. Ha E.-J., Kim B.-S., Park C., Lee J.-O., Paik H. Electroactive hydrogel comprising poly(methyl 2-acetamido acrylate) for an artifi cial actuator. J. Appl. Phys., 2013, vol. 114, pp. 054701.
  42. Tai Z., Yang J., Qi Y., Yan X., Xue Q. Synthesis of a graphene oxide–polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties. RSC Adv., 2013, vol. 3, pp. 12751–12757.
  43. Lo C.-W., Zhu D., Jiang H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter, 2011, vol. 7, pp. 5604–5609.
  44. Andreu-Perez J., Leff D. R., Ip H. M. D., Yang G. From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare. IEEE Trans. Biomed. Eng., 2015, vol. 62, pp. 2750–2762.
  45. Abdur Rahman A. R., Justin G., Guiseppi-Elie A. Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed. Microdevices, 2009, vol. 11, pp. 75–85.
  46. Steeves C. A., Young Y. L., Liu Z., Bapat A., Bhalerao K., Soboyejo A. B. O., Soboyejo W. O. Membrane thickness design of implantable bio-MEMS sensors for the in-situ monitoring of blood fl ow. J. Mater. Sci. Mater. Med., 2007, vol. 18, pp. 25–37.
  47. Polat B. E., Hart D., Langer R., Blankschtein D. Ultrasoundmediated transdermal drug delivery: Mechanisms, scope, and emerging trends. J. Control. Release, 2011, vol. 152, pp. 330–348.
  48. Levy D., Kost J., Meshulam Y., Langer R. Effect of ultrasound on transdermal drug delivery to rats and guinea pigs. J. Clin. Invest., 1989, vol. 83, pp. 2074–2078.
  49. Merino V., Castellano A. L., Delgado-Charro M. B. Iontophoresis for Therapeutic Drug Delivery and Non-invasive Sampling Applications. In: Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Berlin, Heidelberg, Springer, 2017, pp. 77–101.
  50. Burnette R. R. Ongpipattanakul B. Characterization of the Permselective Properties of Excised Human Skin During Iontophoresis. J. Pharm. Sci., 1987, vol. 76, pp. 765–773.
  51. Hoogstraate A., Srinivasan V., Sims S., Higuchi W. Iontophoretic enhancement of peptides: behaviour of leuprolide versus model permeants. J. Control. Release, 1994, vol. 31, pp. 41–47.
  52. Park J., Lee H., Lim G.-S., Kim N., Kim D., Kim Y.-C. Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis. AAPS PharmSciTech, 2019, vol. 20, pp. 96.
  53. Tuan-Mahmood T.-M., McCrudden M. T. C., Torrisi B. M., McAlister E., Garland M. J., Singh T. R. R., Donnelly R. F. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci., 2013, vol. 50, pp. 623–637.
  54. Donnelly R. F., Singh T. R. R., Garland M. J., Migalska K., Majithiya R., McCrudden C. M., Kole P. L., Mahmood T. M. T., McCarthy H. O., Woolfson A. D. HydrogelForming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv. Funct. Mater., 2012, vol. 22, pp. 4879–4890.
  55. Kapoor M. S., GuhaSarkar S., Banerjee R. Stratum corneum modulation by chemical enhancers and lipid nanostructures: implications for transdermal drug delivery. Ther. Deliv., 2017, vol. 8, pp. 701–718.
  56. Ibrahim S. A., Li S. K. Effi ciency of Fatty Acids as Chemical Penetration Enhancers: Mechanisms and Structure Enhancement Relationship. Pharm. Res., 2010, vol. 27, pp. 115–125.
  57. Shah P. P., Desai P. R., Channer D., Singh M. Enhanced skin permeation using polyarginine modifi ed nanostructured lipid carriers. J. Control. Release, 2012, vol. 161, pp. 735–745.
  58. Juanola-Feliu E., Colomer-Farrarons J., Miribel-Català P., Samitier J., Valls-Pasola J. Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis. Technovation, 2012, vol. 32, iss. 3–4, pp. 193–204.
  59. Sullivan F., Wyatt J. C. How informatics tools help deal with patients’ problems. BMJ, 2005, vol. 331, pp. 955–957.
  60. Juanola-Feliu E., Miribel-Català P., Avilés C., ColomerFarrarons J., González-Piñero M., Samitier J. Design of a Customized Multipurpose Nano-Enabled Implantable System for in-vivo Theranostics. Sensors, 2014, vol. 14, pp. 19275–19306.