Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Glukhova O. E., Kirillova I. V., Savin A. N., Grebenyuk K. A., Slepchenkov M. M., Kolesnikova A. S., Fadeev A. A., Smigin D. S. Methods for Enhancing Emissive Ability of the Carbon Nanotubes. Izvestiya of Saratov University. Physics , 2014, vol. 14, iss. 2, pp. 18-22. DOI: 10.18500/1817-3020-2014-14-2-18-22

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 171)

Methods for Enhancing Emissive Ability of the Carbon Nanotubes

Glukhova Olga Evgen'evna, Saratov State University
Kirillova Irina Vasil'evna, Saratov State University
Savin Alexander Nikolaevich, Saratov State University
Grebenyuk Konstantin Aleksandrovich, Saratov State University
Slepchenkov Mikhail Mikhailovich, Saratov State University
Kolesnikova Anna Sergeevna, Saratov State University
Fadeev Alexander Andreevich, Saratov State University
Smigin Dmitry Sergeevich, Saratov State University

The analysis of papers devoted to study of the emission properties of the carbon nanotubes and to revealing ways for the control of these properties has been performed. Five main methods for enhancing emissive ability of the carbon nanotubes have been singled out.

  1. Chen Z., den Engelsen D., Bachmann P. K., Elsbergen van V., Koehler I., Merikhi J., Wiechert D. U. High emission current density microwave-plasma-grown carbon nanotube arrays by postdepositional radiofrequency oxygen plasma treatment // Applied Physics Letters. 2005. Vol. 87. P. 243104-1–243104-3.
  2. Kyung S. J., Park J. B., Lee J. H., Yeom G. Y. Improvement of field emission from screen-printed carbon nanotubes by He/(N2,Ar) atmospheric pressure plasma treatment // Journal of Applied Physics. 2006. Vol. 100. P. 124303-1–124303-4.
  3. Ni Z., Ishaq A., Yan L., Gong J., Zhu D. Enhanced electron fi eld emission of carbon nanotubes by Si ion beam irradiation // Journal of Physics D: Applied Physics. 2009. Vol. 42. P. 075408-1–075408-4.
  4. Hazra K. S., Koratkar N. A., Misra D. S. Improved fi eld emission from multiwall carbon nanotubes with nanosize defects produced by ultra-low energy ion bombardment // Carbon. 2011. Vol. 49. P. 4760–4766.
  5. Venugopalan R., Prakash J., Ghatak, S., Mittal K. C., Sathiyamoorthy D. The development and characterisation of carbon nanotubes grown on conductive substrate for fi eld emission application // AIP Conference Proceedings. 2013. Vol. 1538. P. 177–180. 
  6. Kim T.-S., Jeong E.-W., Kim D.-Y., Kim H.-B., Cho Y.-R. Field enhancement factor of carbon nanotube cathode fabricated by hybrid molding technology // 25th International Vacuum Nanoelectronics Conference Proceedings. 2012. №. 6316963. P. 348–349.
  7. Zhang H. L., Li J. F., Yao K. F., Chen L. D. Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials // Journal Applied Physics. 2005. Vol. 97. P. 114310–114315.
  8. Hojati-Talemi P., Kannan A. G., Simon G. P. Fusion of carbon nanotubes for fabrication of fi eld emission cathodes // Carbon. 2012. Vol. 50. P. 356–361.
  9. Arai S., Miyagawa K. Field emission properties of cobalt/ multiwalled carbon nanotube composite fi lms fabricated by electrodeposition // Applied Surface Science. 2013. Vol. 280. P. 957–961.
  10. Deng J., Zheng R., Yang Y., Zhao Y., Cheng G. Excellent fi eld emission characteristics from few-layer graphene–carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition // Carbon. 2012. Vol. 50. P. 4732–4737.
  11. Fransen M. J., van Rooy Th. L., Kruit P. Field emission energy distributions from individual multiwalled carbon nanotubes // Applied Surface Science. 1999. Vol. 146. P. 312–327.
  12. Zhou G., Duan W., Gu B. Electronic structure and fi eldemission characteristics of open-ended single-walled carbon nanotubes // Physics Review Letters. 2001. Vol. 87. P. 095504-1–095504-4.
  13. Buldum A., Lu J.P. Electron fi eld emission properties of closed carbon nanotubes // Physics Review Letters. 2003. Vol. 91. P. 236801-1–236801-4.
  14. Chun K.Y., Cheol J. L. Potassium Doping in the DoubleWalled Carbon Nanotubes at Room Temperature // J. Phys. Chem. C. 2008. Vol. 112. P. 4492-4497.
  15. Kim J. P., Chang H. B., Kim B. J., Park J. S. Enhancement of electron emission and long-term stability of tip-type carbon nanotube field emitters via lithium coating // Thin Solid Films. 2013. Vol. 528. P. 242– 246.
  16. Ye Y., Guo T. Improvement of the fi eld emission of carbon nanotubes-metal nanocomposite // J. Mater. Sci : Mater. Electron. 2013. Vol. 24. P. 1775–1781.
  17. Мусатов А. Л., Израэльянц К. Р., Чиркова Е. Г., Крестинин А. В. Автоэлектронная эмиссия из одностенных углеродных нанотрубок с нанесенными на них атомами цезия // Физика твердого тела. 2011. Т. 53, вып. 7. С. 1428–1432.
  18. Zhao G., Zhang Q., Zhang H., Yang G., Zhou O., Qin L. C. Field emission of electrons from a Cs-doped single carbon nanotube of known chiral indices // Applied Physics Letters. 2006. Vol. 89. P. 263113-1– 263113-3.
  19. Driscoll J. A., Varga K. Time-dependent densityfunctional study of field emission from tipped carbon nanotubes // Physical Review B. 2009. Vol. 80. P. 245431-1–245431-4.