Для цитирования:
Глухова О. Е., Кириллова И. В., Савин А. Н., Гребенюк К. А., Слепченков М. М., Колесникова А. С., Фадеев А. А., Шмыгин Д. С. Методы повышения эмиссионной способности углеродных нанотрубок // Известия Саратовского университета. Новая серия. Серия: Физика. 2014. Т. 14, вып. 2. С. 18-22. DOI: 10.18500/1817-3020-2014-14-2-18-22
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 195)
Язык публикации:
русский
Рубрика:
УДК:
538.971
Методы повышения эмиссионной способности углеродных нанотрубок
Авторы:
Глухова Ольга Евгеньевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Кириллова Ирина Васильевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Савин Александр Николаевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Гребенюк Константин Александрович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Слепченков Михаил Михайлович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Колесникова Анна Сергеевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Фадеев Александр Андреевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Шмыгин Дмитрий Сергеевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация:
Проведен анализ работ, посвященных изучению эмиссионных свойств углеродных нанотрубок и выявлению способов контроля этих свойств. Выделены пять основных методов повышения эмиссионной способности углеродных нанотрубок.
Ключевые слова:
Список источников:
- Chen Z., den Engelsen D., Bachmann P. K., Elsbergen van V., Koehler I., Merikhi J., Wiechert D. U. High emission current density microwave-plasma-grown carbon nanotube arrays by postdepositional radiofrequency oxygen plasma treatment // Applied Physics Letters. 2005. Vol. 87. P. 243104-1–243104-3.
- Kyung S. J., Park J. B., Lee J. H., Yeom G. Y. Improvement of field emission from screen-printed carbon nanotubes by He/(N2,Ar) atmospheric pressure plasma treatment // Journal of Applied Physics. 2006. Vol. 100. P. 124303-1–124303-4.
- Ni Z., Ishaq A., Yan L., Gong J., Zhu D. Enhanced electron fi eld emission of carbon nanotubes by Si ion beam irradiation // Journal of Physics D: Applied Physics. 2009. Vol. 42. P. 075408-1–075408-4.
- Hazra K. S., Koratkar N. A., Misra D. S. Improved fi eld emission from multiwall carbon nanotubes with nanosize defects produced by ultra-low energy ion bombardment // Carbon. 2011. Vol. 49. P. 4760–4766.
- Venugopalan R., Prakash J., Ghatak, S., Mittal K. C., Sathiyamoorthy D. The development and characterisation of carbon nanotubes grown on conductive substrate for fi eld emission application // AIP Conference Proceedings. 2013. Vol. 1538. P. 177–180.
- Kim T.-S., Jeong E.-W., Kim D.-Y., Kim H.-B., Cho Y.-R. Field enhancement factor of carbon nanotube cathode fabricated by hybrid molding technology // 25th International Vacuum Nanoelectronics Conference Proceedings. 2012. №. 6316963. P. 348–349.
- Zhang H. L., Li J. F., Yao K. F., Chen L. D. Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials // Journal Applied Physics. 2005. Vol. 97. P. 114310–114315.
- Hojati-Talemi P., Kannan A. G., Simon G. P. Fusion of carbon nanotubes for fabrication of fi eld emission cathodes // Carbon. 2012. Vol. 50. P. 356–361.
- Arai S., Miyagawa K. Field emission properties of cobalt/ multiwalled carbon nanotube composite fi lms fabricated by electrodeposition // Applied Surface Science. 2013. Vol. 280. P. 957–961.
- Deng J., Zheng R., Yang Y., Zhao Y., Cheng G. Excellent fi eld emission characteristics from few-layer graphene–carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition // Carbon. 2012. Vol. 50. P. 4732–4737.
- Fransen M. J., van Rooy Th. L., Kruit P. Field emission energy distributions from individual multiwalled carbon nanotubes // Applied Surface Science. 1999. Vol. 146. P. 312–327.
- Zhou G., Duan W., Gu B. Electronic structure and fi eldemission characteristics of open-ended single-walled carbon nanotubes // Physics Review Letters. 2001. Vol. 87. P. 095504-1–095504-4.
- Buldum A., Lu J.P. Electron fi eld emission properties of closed carbon nanotubes // Physics Review Letters. 2003. Vol. 91. P. 236801-1–236801-4.
- Chun K.Y., Cheol J. L. Potassium Doping in the DoubleWalled Carbon Nanotubes at Room Temperature // J. Phys. Chem. C. 2008. Vol. 112. P. 4492-4497.
- Kim J. P., Chang H. B., Kim B. J., Park J. S. Enhancement of electron emission and long-term stability of tip-type carbon nanotube field emitters via lithium coating // Thin Solid Films. 2013. Vol. 528. P. 242– 246.
- Ye Y., Guo T. Improvement of the fi eld emission of carbon nanotubes-metal nanocomposite // J. Mater. Sci : Mater. Electron. 2013. Vol. 24. P. 1775–1781.
- Мусатов А. Л., Израэльянц К. Р., Чиркова Е. Г., Крестинин А. В. Автоэлектронная эмиссия из одностенных углеродных нанотрубок с нанесенными на них атомами цезия // Физика твердого тела. 2011. Т. 53, вып. 7. С. 1428–1432.
- Zhao G., Zhang Q., Zhang H., Yang G., Zhou O., Qin L. C. Field emission of electrons from a Cs-doped single carbon nanotube of known chiral indices // Applied Physics Letters. 2006. Vol. 89. P. 263113-1– 263113-3.
- Driscoll J. A., Varga K. Time-dependent densityfunctional study of field emission from tipped carbon nanotubes // Physical Review B. 2009. Vol. 80. P. 245431-1–245431-4.
- 1517 просмотров