Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Koronevskiy N. V., Inozemtseva O. A., Sergeeva B. V., Ushakov A. V., Sergeev S. A. Investigation of the process of recrystallization calcium carbonate microparticles grown on polycaprolactone nanofibers using scanning electron microscopy and X-ray diffraction. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 2, pp. 179-187. DOI: 10.18500/1817-3020-2023-23-2-179-187, EDN: ASRADO

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.06.2023
Full text:
(downloads: 139)
Language: 
Russian
Article type: 
Article
UDC: 
29.19.16:29.19.22:616-77:615.4
EDN: 
ASRADO

Investigation of the process of recrystallization calcium carbonate microparticles grown on polycaprolactone nanofibers using scanning electron microscopy and X-ray diffraction

Autors: 
Koronevskiy Nikita Vladimirovich, Saratov State University
Inozemtseva Olga Aleksandrovna, Saratov State University
Sergeeva Bela V., Saratov State University
Ushakov Arseniy V., Saratov State University
Sergeev Sergey Alekseevich, Saratov State University
Abstract: 

Background and Objectives: A method for the mineralization of polycaprolactone nanofibers with microparticles of calcium carbonate (vaterite) is presented. The proposed composite material can be used as a tissue engineering scaffold and a drug delivery vehicle for regenerative medicine. Materials and Methods: The process of recrystallization of vaterite microparticles formed on polycaprolactone fibers into calcite is studied using scanning electron microscopy and X-ray diffraction. Results: The dependences of the mass and quantitative fractions of vaterite/calcite microparticles depending on the duration of the experiment have been compared. Conclusion: The total recrystallization time for vaterite microparticles with an average diameter of 1.2 ± 0.4 microns is 24 hours, and the effective time of their use as a container for targeted drug delivery is limited to 18 hours.

Acknowledgments: 
The work was supported by a grant within the innovation project No. 17309ГУ/2022 dated 04 December 2022. The authors express their gratitude to the Laboratory of Diagnostics of Nanomaterials and Structures, as well as to the Center for Collective Use of Saratov State University and personally to Viktor V. Galushka and Maria A. Popova for their assistance in conducting the study.
Reference: 
  1. Yang J., Deng C., Shafiq M., Li Z., Zhang Q., Du H., Li S., Zhou X., He C. Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration. Smart Materials in Medicine, 2022, vol. 3, pp. 217–229. https://doi.org/10.1016/j.smaim.2022.01.007
  2. Grayson W., Martens T., Eng G., Radisic M., Vunjak-Novakovic G. Biomimetic approach to tissue engineering. Ed. by M. Levin, S. Rétau. Seminars in Cell & Developmental Biology. Academic Press, 2009, vol. 20, no. 6, pp. 665–673. https://doi.org/10.1016/j.semcdb.2008.12.008
  3. Darder M., Aranda P., Ruiz-Hitzky E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, 2007, vol. 19, iss. 10, pp. 1309–1319. https://doi.org/10.1002/adma.200602328
  4. Thadepalli S. Review of multifarious applications of polymers in medical and health care textiles. Materials Today: Proceedings, 2022, vol. 55, pp. 330–336. https://doi.org/10.1016/j.matpr.2021.07.513
  5. Inozemtseva O. A., Salkovskiy Y. E., Severyukhina A. N., Vidyasheva I. V., Petrova N. V., Metwally H. A., Stetciura I. Y., Gorin D. A. Electrospinning of functional materials for biomedicine and tissue engineering. Russian Chemical Reviews, 2015, vol. 84, iss. 3, pp. 251–274. https://doi.org/10.1070/RCR4435
  6. Powell H. M., Boyce S. T. Engineered human skin fabricated using electrospun collagen-PCL blends: Morphogenesis and mechanical properties. Tissue Engeneering Part A, 2009, vol. 15, iss. 8, pp. 2177–2187. https://doi.org/10.1089/ten.tea.2008.0473
  7. Kolambkar Y. M., Peister A., Ekaputra A. K., Hutmacher D. W., Guldberg R. E. Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes. Tissue Engeneering Part A, 2010, vol. 16, iss. 10, pp. 3219–3330. https://doi.org/10.1089/ten.tea.2010.0004
  8. Shafiee A., Soleimani M., Chamheidari G. A., Seyedjafari E., Dodel M., Atashi A., Gheisari Y. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. Journal of Biomedical Materials Research A, 2011, vol. 99, iss. 3, pp. 467–478. https://doi.org/10.1002/jbm.a.33206
  9. Savelyeva M. S., Abalymov A. A., Lyubun G. P., Vidyasheva I. V., Yashchenok A. M., Douglas T. E. L., Gorin D. A., Parakhonskiy B. V. Vaterite coatings on electrospun polymeric fibers for biomedical applications. Journal of Biomedical Materials Research Part A, 2017, vol. 105, iss. 1, pp. 94–103. https://doi.org/10.1002/jbm.a.35870
  10. Saveleva M. S., Ivanov A. N., Kurtukova M. O., Atkin V. S., Ivanova A. G., Lyubun G. P., Martyukova A. V., Cherevko E. I., Sargsyan A. K., Fedonnikov A. S., Norkin I. A., Skirtach A. G., Gorin D. A., Parakhonskiy B. V. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. Materials Science and Engineering, 2018, vol. 85, pp. 57–67. https://doi.org/10.1016/j.msec.2017.12.019
  11. Suzuki S., Ikada Y. Medical Application. In: Rafael A. Auras, Loong-Tak Lim, Susan E. M. Selke, Hideto Tsuji, eds. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life. Wiley Series on Polymer Engineering and Technology. Wiley, 2022. P. 581–604.
  12. Yin S., Zhang W., Zhang Z., Jiang X. Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Advanced Healthcare Materials, 2019, vol. 8, iss. 10, article no. 1801433. https://doi.org/10.1002/adhm.201801433
  13. Han Y. Biomimetic Design and Biocompatibility of Biomimetic Calcium Carbonate Nanocomposites for Skeletal Muscle Injury Repair. Journal of Nanomaterials, 2022, vol. 2022, article no. 8072185. https://doi.org/10.1155/2022/8072185
  14. Unger R. E., Stojanovic S., Besch L., Alkildani S., Schröder R., Jung O., Bogram C., Görke O., Najman S., Tremel W., Barbeck M. In Vivo Biocompatibility Investigation of an Injectable Calcium Carbonate (Vaterite) as a Bone Substitute including Compositional Analysis via SEM-EDX Technology. International Journal of Molecular Sciences, 2022, vol. 23, iss. 3, article no. 1196. https://doi.org/10.3390/ijms23031196
  15. Parakhonskiy B. V., Yashchenok A. M., Donatan S., Volodkin D. V., Tessarolo F., Antolini R., Möhwald H., Skirtach A. G. Macromolecule Loading into Spherical, Elliptical, Star-Like and Cubic Calcium Carbonate Carriers. ChemPhysChem, 2014, vol. 15, iss. 13, pp. 2817–2822. https://doi.org/10.1002/cphc.201402136
  16. Roth R., Schoelkopf J., Huwyler J., Puchkov M. Functionalized calcium carbonate microparticles for the delivery of proteins. European Journal of Pharmaceutics and Biopharmaceutics, 2018, vol. 122, pp. 96–103. https://doi.org/10.1016/j.ejpb.2017.10.012
  17. Yahaya S., Ibrahim T., Ibrahim A. R. Template-Free Synthesis and Control Drug Release of Calcium Carbonate-Hydroxylapatite Composite. American Journal of Multidisciplinary Research and Innovation, 2022, vol. 1, iss. 2, pp. 56–62. https://doi.org/10.54536/ajmri.v1i2.248
  18. Koronevskiy N. V., Savelyeva M. S., Lomova M. V., Sergeeva B. V., Kozlova A. A., Sergeev S. A. Composite mesoporous vaterite-magnetite coatings on polycaprolactone fibrous matrix. Izvestiya of Saratov University. Physics, 2022, vol. 22, iss. 1, pp. 62–71. https://doi.org/10.18500/1817-3020-2022-22-1-62-71
  19. Trakoolwannachai V., Kheolamai P., Ummartyotin S. Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Composites Part B: Engineering, 2019, vol. 173, article no. 106974. https://doi.org/10.1016/j.compositesb.2019.106974
  20. Yaseen S. A., Yiseen G. A., Li Z. Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide. ACS Omega, 2019, vol. 4, iss. 6, pp. 10160–10170. https://doi.org/10.1021/acsomega.9b00042
  21. Chong K. Y., Chia C. H., Zakaria S., Sajab M. S. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. Journal of Environmental Chemical Engineering, 2014, vol. 2, iss. 4, pp. 2156–2161. https://doi.org/10.1016/j.jece.2014.09.017
  22. Sergeeva A., Sergeev R., Lengert E., Zakharevich A., Parakhonskiy B., Gorin D., Sergeev S., Volodkin D. Composite magnetite and protein containing CaCO3 crystals. External manipulation and vaterite → calcite recrystallization-mediated release performance. ACS Applied Materials & Interfaces, 2015, vol. 7, iss. 38, pp. 21315–21325. https://doi.org/10.1021/acsami.5b05848
Received: 
04.03.2023
Accepted: 
24.03.2023
Published: 
30.06.2023