Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Короневский Н. В., Иноземцева О. А., Сергеева Б. В., Ушаков А. В., Сергеев С. А. Исследование процесса перекристаллизации микрочастиц карбоната кальция, выращенных на волокнах поликапролактона, с помощью сканирующей электронной микроскопии и рентгеновской дифракции // Известия Саратовского университета. Новая серия. Серия: Физика. 2023. Т. 23, вып. 2. С. 179-187. DOI: 10.18500/1817-3020-2023-23-2-179-187, EDN: ASRADO

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
30.06.2023
Полный текст в формате PDF(Ru):
(загрузок: 105)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
29.19.16:29.19.22:616-77:615.4
EDN: 
ASRADO

Исследование процесса перекристаллизации микрочастиц карбоната кальция, выращенных на волокнах поликапролактона, с помощью сканирующей электронной микроскопии и рентгеновской дифракции

Авторы: 
Короневский Никита Владимирович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Иноземцева Ольга Александровна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Сергеева Бэла Владимировна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Ушаков Арсений Владимирович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Сергеев Сергей Алексеевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Представлен метод минерализации нановолокон поликапролактона микрочастицами карбоната кальция (ватерита). Предложенный композитный материал может быть использован в качестве тканеинженерного каркаса и средства доставки лекарственных веществ для регенеративной медицины. С помощью сканирующей электронной микроскопии и рентгеновской дифракции исследован процесс перекристаллизации микрочастиц ватерита, сформированных на волокнах поликапролактона, в кальцит. Проведено сравнение зависимостей массовых и количественных долей микрочастиц ватерита/кальцита от продолжительности эксперимента. Полное время перекристаллизации микрочастиц ватерита со средним диаметром 1.2 ± 0.4 мкм составляет 24 часа, а эффективное время их использования в качестве контейнера для адресной доставки лекарственных средств ограничено 18 часами. 

Благодарности: 
Работа выполнена при поддержке гранта в рамках реализации инновационного проекта № 17309ГУ/2022 от 04.12.2022. Авторы выражают признательность Лаборатории диагностики наноматериалов и структур, а также Центру коллективного пользования СГУ имени Н. Г. Чернышевского и лично кандидату физико-математических наук Галушка Виктору Владимировичу и Поповой Марии Андреевне за оказанную помощь при проведении данного исследования.
Список источников: 
  1. Yang J., Deng C., Shafiq M., Li Z., Zhang Q., Du H., Li S., Zhou X., He C. Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration // Smart Materials in Medicine. 2022. Vol. 3. P. 217–229. https://doi.org/10.1016/j.smaim.2022.01.007
  2. Grayson W., Martens T., Eng G., Radisic M., Vunjak-Novakovic G. Biomimetic approach to tissue engineering / eds. M. Levin, S. Rétaux. Academic Press, 2009. Vol. 20, № 6. P. 665–673. (Seminars in Cell & Developmental Biology). https://doi.org/10.1016/j.semcdb.2008.12.008
  3. Darder M., Aranda P., Ruiz-Hitzky E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials // Advanced Materials. 2007. Vol. 19, № 10. P. 1309–1319. https://doi.org/10.1002/adma.200602328
  4. Thadepalli S. Review of multifarious applications of polymers in medical and health care textiles // Materials Today: Proceedings. 2022. Vol. 55. P. 330–336. https://doi.org/10.1016/j.matpr.2021.07.513
  5. Inozemtseva O. A., Salkovskiy Y. E., Severyukhina A. N., Vidyasheva I. V., Petrova N. V., Metwally H. A., Stetciura I. Y., Gorin D. A. Electrospinning of functional materials for biomedicine and tissue engineering // Russian Chemical Reviews. 2015. Vol. 84, № 3. P. 251–274. https://doi.org/10.1070/RCR4435
  6. Powell H. M., Boyce S. T. Engineered human skin fabricated using electrospun collagen-PCL blends: Morphogenesis and mechanical properties // Tissue Engeneering Part A. 2009. Vol. 15, iss. 8. P. 2177–2187. https://doi.org/10.1089/ten.tea.2008.0473
  7. Kolambkar Y. M., Peister A., Ekaputra A. K., Hutmacher D. W., Guldberg R. E. Colonization and osteogenic differentiation of different stem cell sources on electrospun nanofiber meshes // Tissue Engeneering Part A. 2010. Vol. 16, № 10. P. 3219–3330. https://doi.org/10.1089/ten.tea.2010.0004
  8. Shafiee A., Soleimani M., Chamheidari G. A., Seyedjafari E., Dodel M., Atashi A., Gheisari Y. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells // Journal of Biomedical Materials Research A. 2011. Vol. 99, № 3. P. 467–478. https://doi.org/10.1002/jbm.a.33206
  9. Savelyeva M. S., Abalymov A. A., Lyubun G. P., Vidyasheva I. V., Yashchenok A. M., Douglas T. E. L., Gorin D. A., Parakhonskiy B. V. Vaterite coatings on electrospun polymeric fibers for biomedical applications // Journal of Biomedical Materials Research Part A. 2017. Vol. 105, № 1. P. 94–103. https://doi.org/10.1002/jbm.a.35870
  10. Saveleva M. S., Ivanov A. N., Kurtukova M. O., Atkin V. S., Ivanova A. G., Lyubun G. P., Martyukova A. V., Cherevko E. I., Sargsyan A. K., Fedonnikov A. S., Norkin I. A., Skirtach A. G., Gorin D. A., Parakhonskiy B. V. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications // Materials Science and Engineering. 2018. Vol. 85. P. 57–67. https://doi.org/10.1016/j.msec.2017.12.019
  11. Suzuki S., Ikada Y. Medical application // Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life / eds. Rafael A. Auras, Loong-Tak Lim, Susan E. M. Selke, Hideto Tsuji. Wiley, 2022. P. 581–604. (Wiley Series on Polymer Engineering and Technology).
  12. Yin S., Zhang W., Zhang Z., Jiang X. Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration // Advanced Healthcare Materials. 2019. Vol. 8, № 10. Article number 1801433. https://doi.org/10.1002/adhm.201801433
  13. Han Y. Biomimetic Design and Biocompatibility of Biomimetic Calcium Carbonate Nanocomposites for Skeletal Muscle Injury Repair // Journal of Nanomaterials. 2022. Vol. 2022. Article number 8072185. https://doi.org/10.1155/2022/8072185
  14. Unger R. E., Stojanovic S., Besch L., Alkildani S., Schröder R., Jung O., Bogram C., Görke O., Najman S., Tremel W., Barbeck M. In Vivo Biocompatibility Investigation of an Injectable Calcium Carbonate (Vaterite) as a Bone Substitute including Compositional Analysis via SEM-EDX Technology // International Journal of Molecular Sciences. 2022. Vol. 23, № 3. Article number 1196. https://doi.org/10.3390/ijms23031196
  15. Parakhonskiy B. V., Yashchenok A. M., Donatan S., Volodkin D. V., Tessarolo F., Antolini R., Möhwald H., Skirtach A. G. Macromolecule Loading into Spherical, Elliptical, Star-Like and Cubic Calcium Carbonate Carriers // ChemPhysChem., 2014. Vol. 15, iss. 13. P. 2817–2822. https://doi.org/10.1002/cphc.201402136
  16. Roth R., Schoelkopf J., Huwyler J., Puchkov M. Functionalized calcium carbonate microparticles for the delivery of proteins // European Journal of Pharmaceutics and Biopharmaceutics. 2018. Vol. 122. P. 96–103. https://doi.org/10.1016/j.ejpb.2017.10.012
  17. Yahaya S., Ibrahim T., Ibrahim A. R. Template-Free Synthesis and Control Drug Release of Calcium Carbonate-Hydroxylapatite Composite // American Journal of Multidisciplinary Research and Innovation. 2022. Vol. 1, № 2. P. 56–62. https://doi.org/10.54536/ajmri.v1i2.248
  18. Короневский Н. В., Савельева М. С., Ломова М. В., Сергеева Б. В., Козлова А. А., Сергеев С. А. Композитные мезопористые ватерит-магнетитовые покрытия, выращенные на матрице из волокон поликапролактона // Известия Саратовского университета. Новая серия. Серия: Физика. 2022. Т. 22, № 1. С. 62–71. https://doi.org/10.18500/1817-3020-2022-22-1-62-71
  19. Trakoolwannachai V., Kheolamai P., Ummartyotin S. Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material // Composites Part B: Engineering. 2019. Vol. 173. Article number 106974. https://doi.org/10.1016/j.compositesb.2019.106974
  20. Yaseen S. A., Yiseen G. A., Li Z. Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide // ACS Omega. 2019. Vol. 4, iss. 6. P. 10160–10170. https://doi.org/10.1021/acsomega.9b00042
  21. Chong K. Y., Chia C. H., Zakaria S., Sajab M. S. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions // Journal of Environmental Chemical Engineering. 2014. Vol. 2, iss. 4. P. 2156–2161. https://doi.org/10.1016/j.jece.2014.09.017
  22. Sergeeva A., Sergeev R., Lengert E., Zakharevich A., Parakhonskiy B., Gorin D., Sergeev S., Volodkin D. Composite magnetite and protein containing CaCO3 crystals. External manipulation and vaterite → calcite recrystallization-mediated release performance // ACS Applied Materials & Interfaces. 2015. Vol. 7, iss. 38. P. 21315–21325. https://doi.org/10.1021/acsami.5b05848 
Поступила в редакцию: 
04.03.2023
Принята к публикации: 
24.03.2023
Опубликована: 
30.06.2023