Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Lavkin A. G., Prozorkevich A. V., Smolyansky S. A., Filatov A. V. Investigation of the Parton Plasma Isotropization at the Heavy Ion Collisions . Izvestiya of Saratov University. Physics , 2007, vol. 7, iss. 2, pp. 50-55. DOI: 10.18500/1817-3020-2007-7-2-50-55

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.12.2007
Full text:
(downloads: 136)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.194

Investigation of the Parton Plasma Isotropization at the Heavy Ion Collisions

Autors: 
Lavkin Aleksandr Grigor'evich, Saratov State University
Prozorkevich A. V., Saratov State University
Smolyansky Stanislav Aleksandrovich, Saratov State University
Filatov A. V., Saratov State University
Abstract: 

Vacuum bosons and fermions creation in a strong electric field in the presence of homogeneous neutral plasma is considered. Both initial conditions postulate that the primordial plasma is either in the thermal equilibrium or in the non-equilibrium state, characteristics for the initial state of the quark-gluon plasma are employed. Essential influence of the dense plasma medium on the process of vacuum particle generation is observed. Depending on statistics it can be observed both enhancement, and easing of effect of a pairs creation. As a whole, process of a vacuum creation has irreversible character: final entropy value after switch-off of the field always more than its initial value, in spite of the fact that the kinetic equation is time reversible. The obtained results can be used for the description of the parton plasma isotropization at the relativistic heavy ion collisions.

Reference: 
  1. Uhlenbeck G.E., Ford G.W. Lectures in Statistical Mechanics // Amer. Math. Soc. Providence, Rhode Island, 1963.
  2. Berges J. Controlled Nonperturbative Dynamics of Quantum Fields out of Equilibrium // Nucl. Phys. A. 2002. V.699. P.847−886.
  3. Berges J., Borsany S., Serreau J. Thermalization of Fermionic quantum fields // Nucl. Phys. B. 2003. V.660. P.51−80.
  4. Smolyansky S.A., Prozorkevich A.V., Maino G., Mashnik S.G. A Covariant Generalization of the Real-Time Green's Functions Method in the Theory of Kinetic Equations // Ann. Phys. 1999. V.277. P.193−218.
  5. Schmidt S.M., Blaschke D.B., Röpke G., Smolyansky S.A., Prozorkevich A.V., Toneev V.D. A Quantum Kinetic Equation for Particle Production in the Schwinger Mechanism // Intern. J. Mod. Phys. E. 1998. V.7. P.709−722.
  6. Pervushin V.N., Skokov V.V., Reichel A.V., Smolyansky S.A., Prozorkevich A.V. The Kinetic Description of Vacuum Particle Creation in the Oscillator Representation // Intern. J. Mod. Phys. A. 2005. V.20. P.5689−5704.
  7. Kluger Y., Mottola E., Eisenberg J.M. Quantum Vlasov Equation and Its Markov Limit // Phys. Rev. D. 1998. V.58. P.125015.
  8. Морозов В.Г., Репке Г., Хелль А. Кинетическая теория квантово-электродинамической плазмы в сильном электромагнитном поле. I. Ковариантный формализм // Теорет. и мат. физика. 2002. Т.131. С.432−455.
  9. Морозов В.Г., Репке Г., Хелль А. Кинетическая теория квантово-электродинамической плазмы в сильном электромагнитном поле. II. Ковариантное приближение среднего поля // Теорет. и мат. физика. 2002. Т.132. P.161−176.
  10. Garbrecht B., Prokopec T., Schmidt M.G. Particle Number in Kinetic Theory // Eur. Phys. J. C. 2004. V.38. P.135−143.
  11. Grib A.A., Mamaev S.G., Mostepanenko V.M. Vacuum Quantum Effects in Strong External Fields. St.-Peterburg: Friedman Lab. Publ., 1994.
  12. Fradkin E.S., Gitman D.M., Schvartsman S.M. Quantum Elecrodyna-mics with Unstable Vacuum. Berlin: Springer Verlag, 1991.
  13. Blaschke D.B., Vinitsky S.I., Gusev A.A., Pervushin V.N., Proskurin D.V. Cosmological Production of Vector Bosons and Cosmic Microwave Background Radiation // Phys. Atom. Nucl. 2004. V.67. P.1074−1086.
  14. Krasnitz A., Venugopolan R. Initial Energy Density of Gluons Produced in Very-High-Energy Nuclear Collision // Phys. Rev. Lett. 2000. V.84. P.4309;
  15. Krasnitz A., Venugopolan R. Initial Gluon Multiplicity in Heavy-Ion Collision // Phys. Rev. Lett. 2001. V.86. P.1717;
  16. Bjoraker J., Venugopolan R. From a Colored Glass Condensate to the Gluon Plasma: Equilibration in High Energy Heavy Ion Collisions // Phys. Rev. C. 2001. V.63. P.024609.
  17. Гриб А.А., Мостепаненко В.М., Фролов В.М. Рождение и рассеяние частиц нестационарным электромагнитным полем в каноническом формализме // Теорет. и мат. физика. 1976. Т.26. С.221−233.
  18. Бухбиндер И.Л., Гитман Д.M., Фролов В.M. // Изв. вузов. Физика. 1980. Т.23. С.77.
  19. Gavrilov S.P., Gitman D.M., Tomazelli J.L. Density Matrix of a Quantum Field in Particle-Creating Background // ArXiv:hep-th/0612064.
  20. De Groot S.R., Leeuwenn V.A. van, Wert Ch.G. van. Relativistic Kinetic Theory, North-Holland Publ. Company, Amsterdam; N.Y.; Oxford, 1980.
  21. Mueller A.H. The Boltzmann Equation for Gluons at Early Times after Heavy Ion Collision // Phys. Lett. 2000. V.B475. P.220.
  22. Mueller A.H. Toward Equilibration in the Eqrly Stages after a High Energy Heavy Ion Collision // Nucl. Phys. B. 2000. V.572. P.227−240.
  23. McLerran L., Venugopolan R. Computing Quark and Gluon Distribution Function for Very Large Nuclei // Phys. Rev. D. 1994. V.49. P.2233.
  24. McLerran L., Venugopolan R. Gluon Distribution Functions for Very Large Nuclei at Small Transverse Momentum // Phys. Rev. D. 1994. V.49. P.3352.
  25. McLerran L., Venugopolan R. Green's Function in the Color Filed of a Large Nucleus // Phys. Rev. D. V.50. P.2225.
  26. Mueller A.H. Small-x Behavior and Parton Saturation: A QCD model // Nucl. Phys. B. 1990. V.335. P.115−137.
  27. Jalilian-Marian J., Kovner A., McLerran L., Weigert H. Intrinsic Glue at Very Small x // Phys. Rev. D. 1997. V.55. P.5414.
  28. Kovchegov Yu.V. Non-Abelian Weizsacker-Williams field and a two dimensional effective color charge density for a very large nucleus // Phys. Rev. D. 1996. V.54. P.5463.
  29. Kovchegov Yu.V. Quantum Structure of the Non-Abelian Weizsacker-Williams Field for a Very Large Nucleus // Phys. Rev. D. 1997. V.55. P.5445.
  30. Kovchegov Yu.V., Mueller A.H. Gluon Production in Current-Nucleus and Nucleon-Nucleus Collisions in a QuasiClassical Approximation // Nucl. Phys. B. 1998. V.529. P.451.
  31. Pisarski R.D. Nonabelian Debye Screening, Tsunami Waves and Worldline Fermions // ArXiv:hep-ph/9710370.
  32. Boyanovsky D., Vega H.J. de, Holman R., Kumar S.P., Pisarski R.D. Nonequilibrium Evolution of a "Tsunami", a High Multiplicity Initial Quantum State: Dynamical Symmetry Breaking // Phys. Rev. D. 1998. V.57. P.3653.
Received: 
20.07.2007
Accepted: 
02.11.2007
Published: 
28.12.2007