Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Bokarev A. N., Plastun I. L. Intermolecular Interaction in Two-component Compounds of Nanodiamonds and Doxorubicin. Izvestiya of Saratov University. Physics , 2018, vol. 18, iss. 3, pp. 177-188. DOI: 10.18500/1817-3020-2018-18-3-177-188

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 204)

Intermolecular Interaction in Two-component Compounds of Nanodiamonds and Doxorubicin

Bokarev Andrey Nikolaevich, Yuri Gagarin State Technical University of Saratov
Plastun Inna L'vovna, Yuri Gagarin State Technical University of Saratov

Background and Objectives: Detonation nanodiamond (ND) is one of the most promising materials for targeted drug delivery – one of rapidly developing areas of modern chemistry, pharmacology and medicine. Wide possibilities of surface modification and advantageous dimensions make nanodiamonds very attractive objects for using in the drug delivery process. A number of studies have shown that therapeutic efficacy of drugs is enhanced and their toxicities may be attenuated with immobilization on the enriched ND. There are a lot of drug immobilization methods on ND surfacy. Creating a molecular complex due to the hydrogen bond formation caused by supramolecular interaction is one of the simplest. In this work the possibility of drug delivery and retention in cells due to the hydrogen bonds formation between enriched nanodiamonds and highly toxic drugs on an example of doxorubicin is studied by numerical simulation. Materials and Methods: Using the molecular modeling by the density functional theory B3LYP method with 6-31G(d) basic set, we analyze the hydrogen bonds formation and their influence on the IR-spectra and structure of a molecular complex which is formed due to the interaction between doxorubicin and nanodiamonds enriched by carboxylic groups. Numerical modeling of carboxylated nanodiamonds and doxorubicin interaction is based on nanodiamond representation by a diamond-like nanoparticle with a simpler structure. Enriched adamantane (1,3,5,7 -adamantanetetracarboxylic acid) is used as an example of a carboxylated diamond-like nanoparticle. Results: As a result of calculations the combined IR spectrum is obtained as imposing of the IR spectra for doxorubicin and 1,3,5,7-adamantanetetracarboxylic acid various interaction positions. The combined IR spectrum demonstrates a good agreement with experimental data. Conclusions: The obtained results demonstrate that there can be a strong supramolecular interaction between doxorubicin and carboxylated detonation nanodiamonds. The formed hydrogen bonds can be considered as one of the main mechanisms for targeted drug delivery and for drug retention in cells and, thus, for enhancement of doxorubicin therapeutic efficacy.


1. Nanotherapeutics: Drug Delivery Concepts in Nanoscience. Ed. by A. Lamprecht. Boca Raton, CRC Press, Taylor and Francis Group, 2008. 292 p.

2. Gupta R. B., Kompella U. B. Nanoparticles Technology for Drug Delivery. New York, Taylor & Francis Group, 2006. 403 p.

3. Popova N. R., Popov A. L., Shcherbakov A. B., Ivanov V. K. Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticle based theranostic agents. Nanosystems: physics, chemistry, mathematics, 2017, vol. 8, no. 2, pp. 282–289. DOI: https://doi.org/10.17586/2220-8054-2017-8-2-282-289

4. Yakovlev R. Y., Solomatin A. S., Leonidov N. B., Kulakova I. I., Lisichkin G.V. Detonation diamond – a perspective carrier for drug delivery systems. Russ. J. Gen. Chem., 2014, vol. 84, no. 2, pp. 379–390. DOI: https://doi.org/10.1134/S1070363214020406

5. Ho D., Wang C.-H. K., Chow E. K.-H. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Science Advances, 2015, vol. 1, no. 7, e1500439. DOI: https://doi.org/10.1126/sciadv.1500439

6. Shenderova O. A., McGuire G. E. Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases, 2015, vol. 10, iss. 3, 030802. DOI: https://doi.org/10.1116/1.4927679

7. Schrand A. M, Ciftan Hens S. A., Shenderova O. A. Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, iss. 1–2, pp. 18–74. DOI: https://doi.org/10.1080/10408430902831987

8. Solomatin A. S., Yakovlev R. Yu., Efremenkova I. G., Sumarukova O. V., Kulakova I. I., Lisichkin G. V. Antibacterial activity of Amikacin-immobilized detonation nanodiamonds. Nanosystems: physics, chemistry, mathematics, 2017, vol. 8, no. 4, pp. 531–534. DOI: https://doi.org/10.17586/2220-8054-2017-8-4-531-534

9. Salaam A. D., Hwang P. T. J., Poonawalla A., Green H. N., Jun H., Dean D. Nanodiamonds enhance therapeutic effi cacy of doxorubicin in treating metastatic hormone-refractory prostate cancer. Nanotechnology, 2014, vol. 25, no. 42, 425103. DOI: https://doi.org/10.1088/0957-4484/25/42/425103

10. Zhang X., Hu W., Li J., Tao L., Wei Y. A comparative study of cellular uptake and cytotoxicity of multiwalled carbon nanotubes, graphene oxide, and nanodiamond. Toxicology Research, 2012, iss. 1, pp. 62–68. DOI: https://doi.org/10.1039/C2TX20006F

11. Shugalei I. V., Voznyakovskii A. P., Garabadzhiu A. V., Tselinskii I. V., Sudarikov A. M., Ilyushin M. A. Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russ. J. Gen. Chem., 2013, vol. 83, iss. 5, pp. 851–883. DOI: https://doi.org/10.1134/S1070363213050010

12. Liu K. K., Zheng W. W., Wang C. C., Chiu Y. C., Cheng C. L., Lo Y. S., Chen C., Chao J. I. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology, 2010, vol. 21, no. 31, 315106. DOI: https://doi.org/10.1088/0957-4484/21/31/315106

13. Toh T.-B., Lee D.-K., Hou W., Abdullah L. N., Nguyen J., D. Ho, Chow E. K.-H. Nanodiamond-Mitoxantrone Complexes Enhance Drug Retention in Chemoresistant Breast Cancer Cells. Mol. Pharmaceutics, 2014, vol. 11, iss. 8, pp. 2683−2691. DOI: https://doi.org/10.1021/mp5001108

14. Plastun I. L., Agandeeva K. E., Bokarev A. N., Zenkin N. S. Diamond-like nanoparticles influence on fl avonoids transport: molecular modeling. Saratov Fall Meeting 2016: Optical Technologies in Biophysics and Medicine XVIII. Ed. by Elina A. Genina, Valery V. Tuchin, Proc. SPIE Vol. 10336, 103360K (8 p.). DOI: https://doi.org/10.1117/12.2267905

15. Adnan A., Lam R., Chen H., Lee J., Schaffer D. J., Barnard A. S., Schatz G. C., Dean H. D. Liu W. K. Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. Mol. Pharmaceutics, 2011, vol. 8, iss. 2, pp. 368–374. DOI: https://doi.org/10.1021/mp1002398

16. Vodorodnaya Svyaz [The Hydrogen bond]. Ed. by N. D. Sokolov. Moscow, Nauka Publ., 1981. 196 p. (in Russian).

17. Babkov L. M., Puchkovskaya G. A., Makarenko S. P., Gavrilko T. A. IK spektroskopiya molekulyarnykh kristallov s vodorodnymi svyazyami [IR Spectroscopy of Molecular Crystals with Hydrogen Bonds]. Kiev, Naukova Dumka Publ., 1989. 160 p. (in Russian).

18. Petrioli R., Fiaschi A. I., Francini E., Pascucci A., Francini G. The role of doxorubicin and epirubicin in the treatment of patients with metastatic hormone refractory prostate cancer. Cancer Treat. Rev., 2008, vol. 34, iss. 8, pp. 710–718.

19. Saltiel E., McGuire W. Doxorubicin (adriamycin) cardiomyopathy – a critical review. West J. Med., 1983, vol. 139, no. 3, pp. 332–341.

20. Kohn W. Nobel Lecture: Electronic structure of matter–wave functions and density functionals. Reviews of Modern Physics, 1999, vol. 71, no. 5, pp. 1253–1266.

21. Pople J. Nobel Lecture: Quantum chemical models. Reviews of Modern Physics, 1999, vol. 71, no. 5, pp. 1267–1274.

22. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09. Wallingford CT, Gaussian Inc., 2009. 394 р.

23. Fort R. C. Jr., Schleyers P., Von R. Adamantane: Consequences of Diamondoid Structure. Chem. Rev., 1964, vol. 64, no. 3, pp. 277–300. DOI: https://doi.org/10.1021/cr60229a004

24. Ermer О. Five-fold diamond structure of adamantane-1,3,5,7-tetracarboxylic acid. Journal of American Chemical Society, 1988, vol. 110, iss. 12, pp. 3747–3754. DOI: https://doi.org/10.1021/ja00220a005

25. Steed J. W., Atwood J. L. Supramolecular Chemistry. 2nd ed. New York, John Wiley & Sons, 2009. 1002 p.

Краткое содержание:
(downloads: 133)