Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Borovkova E. I., Vasilieva D. V., Karavaev A. S., Ishbulatov Y. M., Ponomarenko V. I., Bezruchko B. P., Prokhorov M. D. Estimation of the stationarity time of infra-slow oscillations of brain potentials using electroencephalogram signals. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 4, pp. 474-484. DOI: 10.18500/1817-3020-2025-25-4-474-484, EDN: WXKHKE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.11.2025
Full text:
(downloads: 7)
Language: 
Russian
Article type: 
Article
UDC: 
530.182
EDN: 
WXKHKE

Estimation of the stationarity time of infra-slow oscillations of brain potentials using electroencephalogram signals

Autors: 
Borovkova Ekaterina Igorevna, Saratov State University
Vasilieva Dariya V., Saratov State University
Karavaev Anatoly Sergeevich, Saratov State University
Ishbulatov Yuri Mikhailovich, Saratov State University
Ponomarenko Vladimir Ivanovich, Saratov State University
Bezruchko Boris Petrovich, Saratov State University
Prokhorov Mikhail Dmitrievich, Saratov State University
Abstract: 

Background and Objectives: Infra-slow oscillations of brain potentials with a frequency of less than 0.5 Hz, reflect the activity of the autonomic regulation centers and are markers of the psychophysiological state of a person. Such oscillations are characterized by non-stationary dynamics, which complicates their experimental study. Materials and Methods: We have proposed a method for estimating the characteristic time of stationarity of infra-slow oscillations of brain potentials based on the analysis of experimental time series of electroencephalograms. The method includes the stages of dividing the time series into segments, constructing approximating polynomials for each segment, calculating the matrix of Euclidean distances between the coefficients of the polynomials, clustering the segments to determine areas of quasi-stationary dynamics, and analyzing the durations of the combined segments to obtain statistical characteristics. The proposed method can be used to estimate the stationarity time of other electroencephalograms rhythms, as well as the frequency components of the sequence of RR-interval. The method was used to analyze electroencephalograms signals and RR-intervals of 50 healthy volunteers at rest. Results: It has been shown that oscillations in different frequency ranges of the studied signals have different durations of quasi-stationary behavior. In the frequency ranges of 0.05–0.15 Hz and 0.15–0.50 Hz, reflecting the activity of the sympathetic and parasympathetic branches of regulation, respectively, the stationarity time of infra-slow oscillations in electroencephalograms signals was 30 s and 36 s, respectively. Conclusion: The durations of quasi-stationary sections of infra-slow oscillations in electroencephalograms correspond well to the durations of sections of quasi-stationary dynamics of the sequence of RR-interval in the frequency ranges associated with the processes of sympathetic and parasympathetic regulation of the heart rhythm. 

Acknowledgments: 
The work was carried out within the framework of the State assignment of the Saratov Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences (project No. FFWZ-2025-0016).
Reference: 
  1. Zenkov L. R. Klinicheskaya elektroencefalografiya (s elementami epileptologii). Rukovodstvo dlya vrachey [Clinical Electroencephalography (with Elements of Epileptology). Guide for Physicians]. Moscow, MEDpress-inform Publ., 2023. 360 p. (in Russian).
  2. Aleksandrov M. V., Ivanov L. B., Lytayev S. A., Cherny V. S., Aleksandrova T. V., Chukhlovin A. A., Kostenko I. A., Povalukhina E. S. Elektroencefalografiya: rukovodstvo [Electroencephalography: A guide]. Saint Petersburg, SpetsLit Publ., 2020. 224 p. (in Russian).
  3. Sitnikova E. Yu., Koronovskii A. A., Hramov A. E. Analysis of epileptic activity of brain in case of absence epilepsy: Applied aspects of nonlinear dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, no. 6, pp. 173–182. https://doi.org/10.18500/0869-6632-2011-19-6-173-182 (in Russian).
  4. Zhang H., Zhou Q., Qi C., Chen H., Hu X., Li W., Bai Y., Han J., Wang Y., Liang Z., Chen D., Cong F., Yan J., Li X. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Military Medical Research, 2023, vol. 10, art. 67. https://doi.org/10.1186/s40779-023-00502-7
  5. Simonov A. Y., Kazantsev V. B. Model of the appearance of avalanche bioelectric discharges in neural networks of the brain. JETP Lett., 2011, vol. 93, pp. 470–475. https://doi.org/10.1134/S0021364011080133
  6. Thornton J., D’Souza R., Tandon R. Artificial intelligence and psychiatry research and practice. Asian J. Psychiatr., 2023, vol. 81, art. 103509. https://doi.org/10.1016/j.ajp.2023.103509
  7. Maksimenko V. A., Runnova A. E., Zhuravlev M. O., Protasov P., Kulanin R., Pisarchik A. N., Hramov A. E., Khramova M. V. Human personality reflects spatio-temporal and time-frequency EEG structure. PLoS ONE, 2018, vol. 13, iss. 9, art. e0197642. https://doi.org/10.1371/journal.pone.0197642
  8. Gulyaev S. A. Electroencephalography and analysis of functional brain activity. Russ. J. Child Neurol., 2021, vol. 16, no. 4, pp. 59–68 (in Russian). https://doi.org/10.17650/2073-8803-2021-16-4-59-68
  9. Melnikova T. S., Lapin I. A., Sarkisyan V. V. Use of coherent EEG analysis in psychiatry. Soc. Clin. Psychiatry, 2009, vol. 19, no. 1, pp. 90–94 (in Russian). EDN: KDYEXZ
  10. Nunez P. L., Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG. Oxford, Oxford University Press, 2006. 611 p. https://doi.org/10.1093/acprof:oso/9780195050387.001.0001
  11. Kuc A., Korchagin S., Maksimenko V. A., Shusharina N., Hramov A. E. Combining statistical analysis and machine learning for EEG scalp topograms classification. Front. Syst. Neurosci., 2021, vol. 15, art. 716897. https://doi.org/10.3389/fnsys.2021.716897
  12. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience, 2006, vol. 137, iss. 4, pp. 1087–1106. https://doi.org/10.1016/j.neuroscience.2005.10.029
  13. Pavlov A. N., Hramov A. E., Koronovskii A. A., Sitnikova E. Yu., Makarov V. A., Ovchinnikov A. A. Wavelet analysis in neurodynamics. Phys. Usp., 2012, vol. 55, pp. 845–875. https://doi.org/10.3367/UFNe.0182.201209a.0905
  14. Gordleeva S. Y., Lobov S. A., Mironov V. I., Kastalskiy I. A., Lukoyanov M. V., Krilova N. P., Mukhina I. V., Kaplan A. Y., Kazantsev V. B. Development of the hardware and software complex controlling robotic devices by means of bioelectric signals of the brain and muscles. Nauka i Innovatsii v Meditsine [Science and Innovations in Medicine], 2016, vol. 1, no. 3, pp. 77–82 (in Russian). https://doi.org/10.35693/2500-1388-2016-0-3-77-82
  15. Gordleeva S. Y., Lobov S. A., Mironov V. I., Kastal’skiy I. A., Lukoyanov M. V., Krylova N. P., Mukhina I. V., Kaplan A. Ya., Kazantsev V. B. Real-time EEG–EMG human–machine interface-based control system for a lower-limb exoskeleton. IEEE Access, 2020, vol. 8, pp. 84070–84081. https://doi.org/10.1109/ACCESS.2020.2991812
  16. Aladjalova N. A. Infra-slow rhythmic oscillations of the steady potential of the cerebral cortex. Nature, 1957, vol. 179, iss. 4567, pp. 957–959. https://doi.org/10.1038/179957a0
  17. Knyazev G. G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neuroscience & Biobehavioral Reviews, 2012, vol. 36, iss. 1, pp. 677–695. https://doi.org/10.1016/j.neubiorev.2011.10.002
  18. Lörincz M. L., Geall F., Bao Y., Crunelli V., Hughes S. W. ATP-dependent infra-slow (< 0.1 Hz) oscillations in thalamic networks. PLoS ONE, 2009, vol. 4, iss. 2, art. e4447. https://doi.org/10.1371/journal.pone.0004447
  19. Karavaev A. S., Kiselev A. R., Runnova A. E., Zhuravlev M. O., Borovkova E. I., Prokhorov M. D., Hramov A. E. Synchronization of infra-slow oscillations of brain potentials with respiration. Chaos, 2018, vol. 28, iss. 8, art. 081102. https://doi.org/10.1063/1.5046758
  20. Borovkova E. I., Prokhorov M. D., Kiselev A. R., Hramkov A. N., Mironov S. A., Penzel T. Directional couplings between the respiration and parasympathetic control of the heart rate during sleep and wakefulness in healthy subjects at different ages. Frontiers in Network Physiology, 2022, vol. 2, art. 942700. https://doi.org/10.3389/fnetp.2022.942700
  21. Ponomarenko V. I., Karavaev A. S., Borovkova E. I., Hramkov A. N., Penzel T. Decrease of coherence between the respiration and parasympathetic control of the heart rate with aging. Chaos, 2021, vol. 31, iss. 7, art. 073105. https://doi.org/10.1063/5.0056624
  22. Karavaev A. S., Skazkina V. V., Borovkova E. I., Prokhorov M. D., Penzel T. Synchronization of the processes of autonomic control of blood circulation in humans is different in the awake state and in sleep stages. Frontiers in Neuroscience, 2022, vol. 15, art. 791510. https://doi.org/10.3389/fnins.2021.791510
  23. Prokhorov M. D., Borovkova E. I., Hramkov A. N., Karavaev A. S. Changes in the power and coupling of infraslow oscillations in the signals of EEG leads during stress-inducing cognitive tasks. Applied Sciences, 2023, vol. 13, iss. 14, art. 8390. https://doi.org/10.3390/app13148390
  24. Borovkova E. I., Hramkov A. N., Dubinkina E. S., Prokhorov M. D. Biomarkers of the psychophysiological state during cognitive tasks estimated from the signals of the brain, cardiovascular and respiratory systems. Eur. Phys. J. Spec. Top., 2023, vol. 232, iss. 5, pp. 625–633. https://doi.org/10.1140/epjs/s11734-022-00734-z
  25. Paluš M. Nonlinearity in normal human EEG: Cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biological Cybernetics, 1996, vol. 75, no. 5, pp. 389–396. https://doi.org/10.1007/s004220050304
  26. Gribkov D., Gribkova V. Learning dynamics from nonstationary time series: Analysis of electroencephalograms. Phys. Rev. E, 2000, vol. 61, no. 6, pp. 6538–6545. https://doi.org/10.1103/physreve.61.6538
  27. Kaplan A. Ya. The nonstationary EEG: Methodological and experimental analysis // Usp. Fiziol. Nauk, 1998, vol. 29, no. 3, pp. 35–55 (in Russian). PMID: 9749456
  28. Kohlmorgen J., Müller K.-R., Pawelzik K., Rittweger J. Identification of nonstationary dynamics in physiological recordings. Biological Cybernetics, 2000, vol. 83, no. 1, pp. 73–84. https://doi.org/10.1007/s004220000144
  29. Dikanev T., Smirnov D., Wennberg R., Velazquez J. L. P., Bezruchko B. EEG nonstationarity during intracranially recorded seizures: Statistical and dynamical analysis. Clinical Neurophysiology, 2005, vol. 116, iss. 8, pp. 1796–1807. https://doi.org/10.1016/j.clinph.2005.04.013
  30. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 1996, vol. 93, iss. 5, pp. 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
  31. Baevskiy R. M., Ivanov G. G., Chireykin L. V., Gavrilyshkin A. P., Dovgalevsky P. Ya., Kukushkin Yu. A., Mironova T. F., Prilutsky D. A., Semenov A. V., Fedorov V. F., Fleishman A. N., Medvedev M. M., Chireikin L. V. Analysis of heart rate variability under using various electrocardiographic systems (Part 1). Vestnik Aritmologii, 2002, no. 24, pp. 65–86.
  32. Medicom MTD. Electroencephalograph-recorder. Available at: http://medicom-mtd.com/htm/Products/eegr-main.html (accessed October 14, 2025).
  33. Ishbulatov Y. M., Karavaev A. S., Kiselev A. R., Simonyan M. A., Prokhorov M. D., Ponomarenko V. I., Mironov S. A., Gridnev V. I., Bezruchko B. P., Shvartz V. A. Mathematical modeling of cardiovascular autonomic control in healthy subjects during a passive head-up tilt test. Scientific Reports, 2020, vol. 10, iss. 1, art. 16550. https://doi.org/10.1038/s41598-020-71532-7
  34. Prokhorov M. D., Karavaev A. S., Ishbulatov Y. M., Ponomarenko V. I., Kiselev A. R., Kurths J. Interbeat interval variability versus frequency modulation of heart rate. Phys. Rev. E, 2021, vol. 103, no. 4, art. 042404. https://doi.org/10.1103/PhysRevE.103.042404
  35. Rousseeuw P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 1987, vol. 20, pp. 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
  36. Blanco S., Garcia H., Quiroga R. Q., Romanelli L., Rosso O. A. Stationarity of the EEG series. IEEE Engineering in Medicine and Biology Magazine, 1995, vol. 14, iss. 4, pp. 395–399. https://doi.org/10.1109/51.395321
Received: 
01.07.2025
Accepted: 
10.09.2025
Published: 
28.11.2025