For citation:
Kuznetsov A. P., Sedova Y. V. Ensembles of four discrete phase oscillators. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 2, pp. 134-146. DOI: 10.18500/1817-3020-2025-25-2-134-146, EDN: ZUYNTS
Ensembles of four discrete phase oscillators
Background and Objectives: Ensembles of four discrete phase oscillators are considered. The aim of the research is to study and compare ensembles with different topologies of coupling: chains, rings and stars. Materials and Methods: We carry out the analysis using three-dimensional discrete maps for the relative phases of oscillators. We use the method of Lyapunov exponent chart, which identifies periodic regimes, quasi-periodic regimes with a different number of incommensurable frequencies and chaos. The various modes are illustrated using phase portraits. Results: We have found the regions of different regimes in the frequency detuning space of oscillators for different topologies of coupling. Resonances are indicated and illustrated both for pairs and for triples of synchronized oscillators, which corresponds to three- and two-frequency quasi-periodicity. We observe Arnold resonance web based on four frequency as well as on chaotic regimes. Conclusion: The ensemble of four discrete phase oscillators demonstrates a variety of quasi-periodic regimes with a different number of incommensurable frequencies, which are caused by possible resonances depending on the topology of coupling.
- Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, 2001. 411 р. https://doi.org/10.1017/CBO9780511755743
- Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From Simple to Complex. Springer, 2009. 425 p.
- Strogatz S. H. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D, 2000, vol. 143, iss. 1–4, pp. 1–20. https://doi.org/10.1016/S0167-2789(00)00094-4
- Acebrón J. A., Bonilla L. L., Pérez Vicente C. J., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. of Mod. Phys., 2005, vol. 77, iss. 1, pp. 137–185. https://doi.org/10.1103/RevModPhys.77.137
- Kuznetsov A. P., Sedova Y. V., Stankevich N. V. Discrete Rössler Oscillators: Maps and Their Ensembles. Int. J. of Bifur. and Chaos, 2023, vol. 33, no. 15, art. 2330037. https://doi.org/10.1142/S0218127423300379
- Biju A. E., Srikanth S., Manoj K., Pawar S. A., Sujith R. I. Dynamics of minimal networks of limit cycle oscillators. Nonlinear Dynamics, 2024, vol. 112, pp. 11329–11348. https://doi.org/10.1007/s11071-024-09641-5
- Arefev A. M., Grines E. A., Osipov G. V. Heteroclinic cycles and chaos in a system of four identical phase oscillators with global biharmonic coupling. Chaos, 2023, vol. 33, iss. 8, art. 083112. https://doi.org/10.1063/5.0156446
- Ashwin P., Burylko O. Weak chimeras in minimal networks of coupled phase oscillators. Chaos, 2015, vol. 25, iss. 1, art. 013106. https://doi.org/10.1063/1.4905197
- Guan Y., Moon K., Kim K. T., Li L. K. Chimera states in a can-annular combustion system. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2023, vol. 265, iss. 4, pp. 3350–3357. https://doi.org/10.3397/IN_2022{_}0473
- Maistrenko V., Vasylenko A., Maistrenko Y., Mosekilde E. Phase chaos in the discrete Kuramoto model. Int. J. of Bifur. and Chaos, 2010, vol. 20, no. 6, pp. 1811–1823. https://doi.org/10.1142/S0218127410026861
- Maistrenko V., Vasylenko A., Maistrenko Y., Mosekilde E. Phase chaos and multistability in the discrete Kuramoto model. Nonlinear Oscillations, 2008, vol. 11, pp. 229–241. https://doi.org/10.1007/s11072-008-0026-4
- Kuznetsov A. P., Sedova Y. V. Low-dimensional discrete Kuramoto model: Hierarchy of multifrequency quasiperiodicity regimes. Int. J. of Bifur. and Chaos, 2014, vol. 24, no. 7, art. 1430022. https://doi.org/10.1142/S0218127414300225
- Shim W. On the generic complete synchronization of the discrete Kuramoto model. Kinetic & Related Models, 2020, vol. 13, iss. 5, pp. 979–1005. https://doi.org/10.3934/krm.2020034
- Broer H., Simó C., Vitolo R. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol’d resonance web. Bull. Belg. Math. Soc. Simon Stevin, 2008, vol. 15, iss. 5, pp. 769–787. https://doi.org/10.36045/bbms/1228486406
- Barlev G., Girvan M., Ott E. Map model for synchronization of systems of many coupled oscillators. Chaos, 2010, vol. 20, iss. 2, art. 023109. https://doi.org/10.1063/1.3357983
- Ha S. Y., Kim D., Kim J., Zhang X. Uniform-in-time transition from discrete to continuous dynamics in the Kuramoto synchronization. J. of Mathematical Phys., 2019, vol. 60, iss. 5, art. 051508. https://doi.org/10.1063/1.5051788
- Kim S., MacKay R. S., Guckenheimer J. Resonance regions for families of torus maps. Nonlinearity, 1989, vol. 2, no. 3, pp. 391–404. https://doi.org/10.1088/0951-7715/2/3/001
- Baesens С., Guckenheimer J., Kim S., MacKay R. S. Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos. Physica D, 1991, vol. 49, iss. 3, pp. 387–475. https://doi.org/10.1016/0167-2789(91)90155-3
- Kuznetsov A. P., Sataev I. R., Sedova Y. V., Turukina L. V. On modelling the dynamics of coupled self-oscillators using the simplest phase maps. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, no. 2, pp. 112–137 (in Russian). https://doi.org/10.18500/0869-6632-2012-20-2-112-137
- Chen J., Zhou L., Sun W. Consensus analysis of chain star networks coupled by leaf nodes. Physica Scripta, 2023, vol. 98, no. 12, art. 125204. https://doi.org/10.1088/1402-4896/ad0588
- Chen X., Li F., Liu S., Zou W. Emergent behavior of conjugate-coupled Stuart–Landau oscillators in directed star networks. Physica A, 2023, vol. 629, art. 129211. https://doi.org/10.1016/j.physa.2023.129211
- Li X. Y., Chang J. M. LP-Star: Embedding Longest Paths into Star Networks with Large-Scale Missing Edges under an Emerging Assessment Model. IEEE TETC, 2025, vol. 13, pp. 147–161. https://doi.org/10.1109/TETC.2024.3387119
- Kuznetsov A. P., Sataev I. R., Turukina L. V. Regional Structure of Two-and Three-Frequency Regimes in a Model of Four Phase Oscillators. Int. J. of Bifur. and Chaos, 2022, vol. 32, no. 3, art. 2230008. https://doi.org/10.1142/S0218127422300087
- Emelianova Y. P., Kuznetsov A. P., Turukina L. V., Sataev I. R., Chernyshov N. Y. A structure of the oscillation frequencies parameter space for the system of dissipatively coupled oscillators. Commun. Nonlinear Sci. Numer. Simul., 2014, vol. 19, iss. 4, pp. 1203–1212. https://doi.org/10.1016/j.cnsns.2013.08.004
- Ashwin P., Guaschi J., Phelps J. M. Rotation sets and phase-locking in an electronic three oscillator system. Physica D, 1993, vol. 66, iss. 3–4, pp. 392–411. https://doi.org/10.1016/0167-2789(93)90075-C
- Kuznetsov A. P., Turukina L. V., Sataev I. R., Chernyshov N. Y. Synchronization and multi-frequency quasi-periodicity in the dynamics of coupled oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2014, vol. 22, no. 1, pp. 27–54 (in Russian). https://doi.org/10.18500/0869-6632-2014-22-1-27-54
- 666 reads