Для цитирования:
Кузнецов А. П., Седова Ю. В. Ансамбли четырех дискретных фазовых осцилляторов // Известия Саратовского университета. Новая серия. Серия: Физика. 2025. Т. 25, вып. 2. С. 134-146. DOI: 10.18500/1817-3020-2025-25-2-134-146, EDN: ZUYNTS
Ансамбли четырех дискретных фазовых осцилляторов
Исследованы ансамбли из четырех дискретных фазовых осцилляторов. Рассмотрение проведено с использованием трехмерных отображений для моделирования относительных фаз осцилляторов. Изучены и сопоставлены случаи связи осцилляторов в цепочку, кольцо и звезду. Анализ проведен с помощью метода карт ляпуновских показателей, выявляющего периодические режимы, квазипериодические режимы с разным числом несоизмеримых частот и хаоса. Для случаев разной топологии связи обсуждение проведено с учетом возможных резонансов. Наблюдаемые режимы иллюстрируются с помощью фазовых портретов, включая случаи различных квазипериодических резонансов с разным числом несоизмеримых частот.
- Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, 2001. 411 р. https://doi.org/10.1017/CBO9780511755743
- Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From Simple to Complex. Springer, 2009. 425 p.
- Strogatz S. H. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D, 2000, vol. 143, iss. 1–4, pp. 1–20. https://doi.org/10.1016/S0167-2789(00)00094-4
- Acebrón J. A., Bonilla L. L., Pérez Vicente C. J., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. of Mod. Phys., 2005, vol. 77, iss. 1, pp. 137–185. https://doi.org/10.1103/RevModPhys.77.137
- Kuznetsov A. P., Sedova Y. V., Stankevich N. V. Discrete Rössler Oscillators: Maps and Their Ensembles. Int. J. of Bifur. and Chaos, 2023, vol. 33, no. 15, art. 2330037. https://doi.org/10.1142/S0218127423300379
- Biju A. E., Srikanth S., Manoj K., Pawar S. A., Sujith R. I. Dynamics of minimal networks of limit cycle oscillators. Nonlinear Dynamics, 2024, vol. 112, pp. 11329–11348. https://doi.org/10.1007/s11071-024-09641-5
- Arefev A. M., Grines E. A., Osipov G. V. Heteroclinic cycles and chaos in a system of four identical phase oscillators with global biharmonic coupling. Chaos, 2023, vol. 33, iss. 8, art. 083112. https://doi.org/10.1063/5.0156446
- Ashwin P., Burylko O. Weak chimeras in minimal networks of coupled phase oscillators. Chaos, 2015, vol. 25, iss. 1, art. 013106. https://doi.org/10.1063/1.4905197
- Guan Y., Moon K., Kim K. T., Li L. K. Chimera states in a can-annular combustion system. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2023, vol. 265, iss. 4, pp. 3350–3357. https://doi.org/10.3397/IN_2022{_}0473
- Maistrenko V., Vasylenko A., Maistrenko Y., Mosekilde E. Phase chaos in the discrete Kuramoto model. Int. J. of Bifur. and Chaos, 2010, vol. 20, no. 6, pp. 1811–1823. https://doi.org/10.1142/S0218127410026861
- Maistrenko V., Vasylenko A., Maistrenko Y., Mosekilde E. Phase chaos and multistability in the discrete Kuramoto model. Nonlinear Oscillations, 2008, vol. 11, pp. 229–241. https://doi.org/10.1007/s11072-008-0026-4
- Kuznetsov A. P., Sedova Y. V. Low-dimensional discrete Kuramoto model: Hierarchy of multifrequency quasiperiodicity regimes. Int. J. of Bifur. and Chaos, 2014, vol. 24, no. 7, art. 1430022. https://doi.org/10.1142/S0218127414300225
- Shim W. On the generic complete synchronization of the discrete Kuramoto model. Kinetic & Related Models, 2020, vol. 13, iss. 5, pp. 979–1005. https://doi.org/10.3934/krm.2020034
- Broer H., Simó C., Vitolo R. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol’d resonance web. Bull. Belg. Math. Soc. Simon Stevin, 2008, vol. 15, iss. 5, pp. 769–787. https://doi.org/10.36045/bbms/1228486406
- Barlev G., Girvan M., Ott E. Map model for synchronization of systems of many coupled oscillators. Chaos, 2010, vol. 20, iss. 2, art. 023109. https://doi.org/10.1063/1.3357983
- Ha S. Y., Kim D., Kim J., Zhang X. Uniform-in-time transition from discrete to continuous dynamics in the Kuramoto synchronization. J. of Mathematical Phys., 2019, vol. 60, iss. 5, art. 051508. https://doi.org/10.1063/1.5051788
- Kim S., MacKay R. S., Guckenheimer J. Resonance regions for families of torus maps. Nonlinearity, 1989, vol. 2, no. 3, pp. 391–404. https://doi.org/10.1088/0951-7715/2/3/001
- Baesens С., Guckenheimer J., Kim S., MacKay R. S. Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos. Physica D, 1991, vol. 49, iss. 3, pp. 387–475. https://doi.org/10.1016/0167-2789(91)90155-3
- Kuznetsov A. P., Sataev I. R., Sedova Y. V., Turukina L. V. On modelling the dynamics of coupled self-oscillators using the simplest phase maps. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, no. 2, pp. 112–137 (in Russian). https://doi.org/10.18500/0869-6632-2012-20-2-112-137
- Chen J., Zhou L., Sun W. Consensus analysis of chain star networks coupled by leaf nodes. Physica Scripta, 2023, vol. 98, no. 12, art. 125204. https://doi.org/10.1088/1402-4896/ad0588
- Chen X., Li F., Liu S., Zou W. Emergent behavior of conjugate-coupled Stuart–Landau oscillators in directed star networks. Physica A, 2023, vol. 629, art. 129211. https://doi.org/10.1016/j.physa.2023.129211
- Li X. Y., Chang J. M. LP-Star: Embedding Longest Paths into Star Networks with Large-Scale Missing Edges under an Emerging Assessment Model. IEEE TETC, 2025, vol. 13, pp. 147–161. https://doi.org/10.1109/TETC.2024.3387119
- Kuznetsov A. P., Sataev I. R., Turukina L. V. Regional Structure of Two-and Three-Frequency Regimes in a Model of Four Phase Oscillators. Int. J. of Bifur. and Chaos, 2022, vol. 32, no. 3, art. 2230008. https://doi.org/10.1142/S0218127422300087
- Emelianova Y. P., Kuznetsov A. P., Turukina L. V., Sataev I. R., Chernyshov N. Y. A structure of the oscillation frequencies parameter space for the system of dissipatively coupled oscillators. Commun. Nonlinear Sci. Numer. Simul., 2014, vol. 19, iss. 4, pp. 1203–1212. https://doi.org/10.1016/j.cnsns.2013.08.004
- Ashwin P., Guaschi J., Phelps J. M. Rotation sets and phase-locking in an electronic three oscillator system. Physica D, 1993, vol. 66, iss. 3–4, pp. 392–411. https://doi.org/10.1016/0167-2789(93)90075-C
- Kuznetsov A. P., Turukina L. V., Sataev I. R., Chernyshov N. Y. Synchronization and multi-frequency quasi-periodicity in the dynamics of coupled oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2014, vol. 22, no. 1, pp. 27–54 (in Russian). https://doi.org/10.18500/0869-6632-2014-22-1-27-54
- 110 просмотров