Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Кузнецов А. П., Седова Ю. В. Ансамбли четырех дискретных фазовых осцилляторов // Известия Саратовского университета. Новая серия. Серия: Физика. 2025. Т. 25, вып. 2. С. 134-146. DOI: 10.18500/1817-3020-2025-25-2-134-146, EDN: ZUYNTS

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
30.06.2025
Полный текст в формате PDF(Ru):
(загрузок: 18)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
530.182
EDN: 
ZUYNTS

Ансамбли четырех дискретных фазовых осцилляторов

Авторы: 
Кузнецов Александр Петрович, Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
Седова Юлия Викторовна, Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
Аннотация: 

Исследованы ансамбли из четырех дискретных фазовых осцилляторов. Рассмотрение проведено с использованием трехмерных отображений для моделирования относительных фаз осцилляторов. Изучены и сопоставлены случаи связи осцилляторов в цепочку, кольцо и звезду. Анализ проведен с помощью метода карт ляпуновских показателей, выявляющего периодические режимы, квазипериодические режимы с разным числом несоизмеримых частот и хаоса. Для случаев разной топологии связи обсуждение проведено с учетом возможных резонансов. Наблюдаемые режимы иллюстрируются с помощью фазовых портретов, включая случаи различных квазипериодических резонансов с разным числом несоизмеримых частот.

Благодарности: 
Работа выполнена в рамках государственного задания Института радиотехники и электроники им. В. А. Котельникова РАН.
Список источников: 
  1. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, 2001. 411 р. https://doi.org/10.1017/CBO9780511755743
  2. Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From Simple to Complex. Springer, 2009. 425 p.
  3. Strogatz S. H. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D, 2000, vol. 143, iss. 1–4, pp. 1–20. https://doi.org/10.1016/S0167-2789(00)00094-4
  4. Acebrón J. A., Bonilla L. L., Pérez Vicente C. J., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. of Mod. Phys., 2005, vol. 77, iss. 1, pp. 137–185. https://doi.org/10.1103/RevModPhys.77.137
  5. Kuznetsov A. P., Sedova Y. V., Stankevich N. V. Discrete Rössler Oscillators: Maps and Their Ensembles. Int. J. of Bifur. and Chaos, 2023, vol. 33, no. 15, art. 2330037. https://doi.org/10.1142/S0218127423300379
  6. Biju A. E., Srikanth S., Manoj K., Pawar S. A., Sujith R. I. Dynamics of minimal networks of limit cycle oscillators. Nonlinear Dynamics, 2024, vol. 112, pp. 11329–11348. https://doi.org/10.1007/s11071-024-09641-5
  7. Arefev A. M., Grines E. A., Osipov G. V. Heteroclinic cycles and chaos in a system of four identical phase oscillators with global biharmonic coupling. Chaos, 2023, vol. 33, iss. 8, art. 083112. https://doi.org/10.1063/5.0156446
  8. Ashwin P., Burylko O. Weak chimeras in minimal networks of coupled phase oscillators. Chaos, 2015, vol. 25, iss. 1, art. 013106. https://doi.org/10.1063/1.4905197
  9. Guan Y., Moon K., Kim K. T., Li L. K. Chimera states in a can-annular combustion system. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2023, vol. 265, iss. 4, pp. 3350–3357. https://doi.org/10.3397/IN_2022{_}0473
  10. Maistrenko V., Vasylenko A., Maistrenko Y., Mosekilde E. Phase chaos in the discrete Kuramoto model. Int. J. of Bifur. and Chaos, 2010, vol. 20, no. 6, pp. 1811–1823. https://doi.org/10.1142/S0218127410026861
  11. Maistrenko V., Vasylenko A., Maistrenko Y., Mosekilde E. Phase chaos and multistability in the discrete Kuramoto model. Nonlinear Oscillations, 2008, vol. 11, pp. 229–241. https://doi.org/10.1007/s11072-008-0026-4
  12. Kuznetsov A. P., Sedova Y. V. Low-dimensional discrete Kuramoto model: Hierarchy of multifrequency quasiperiodicity regimes. Int. J. of Bifur. and Chaos, 2014, vol. 24, no. 7, art. 1430022. https://doi.org/10.1142/S0218127414300225
  13. Shim W. On the generic complete synchronization of the discrete Kuramoto model. Kinetic & Related Models, 2020, vol. 13, iss. 5, pp. 979–1005. https://doi.org/10.3934/krm.2020034
  14. Broer H., Simó C., Vitolo R. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol’d resonance web. Bull. Belg. Math. Soc. Simon Stevin, 2008, vol. 15, iss. 5, pp. 769–787. https://doi.org/10.36045/bbms/1228486406
  15. Barlev G., Girvan M., Ott E. Map model for synchronization of systems of many coupled oscillators. Chaos, 2010, vol. 20, iss. 2, art. 023109. https://doi.org/10.1063/1.3357983
  16. Ha S. Y., Kim D., Kim J., Zhang X. Uniform-in-time transition from discrete to continuous dynamics in the Kuramoto synchronization. J. of Mathematical Phys., 2019, vol. 60, iss. 5, art. 051508. https://doi.org/10.1063/1.5051788
  17. Kim S., MacKay R. S., Guckenheimer J. Resonance regions for families of torus maps. Nonlinearity, 1989, vol. 2, no. 3, pp. 391–404. https://doi.org/10.1088/0951-7715/2/3/001
  18. Baesens С., Guckenheimer J., Kim S., MacKay R. S. Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos. Physica D, 1991, vol. 49, iss. 3, pp. 387–475. https://doi.org/10.1016/0167-2789(91)90155-3
  19. Kuznetsov A. P., Sataev I. R., Sedova Y. V., Turukina L. V. On modelling the dynamics of coupled self-oscillators using the simplest phase maps. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, no. 2, pp. 112–137 (in Russian). https://doi.org/10.18500/0869-6632-2012-20-2-112-137
  20. Chen J., Zhou L., Sun W. Consensus analysis of chain star networks coupled by leaf nodes. Physica Scripta, 2023, vol. 98, no. 12, art. 125204. https://doi.org/10.1088/1402-4896/ad0588
  21. Chen X., Li F., Liu S., Zou W. Emergent behavior of conjugate-coupled Stuart–Landau oscillators in directed star networks. Physica A, 2023, vol. 629, art. 129211. https://doi.org/10.1016/j.physa.2023.129211
  22. Li X. Y., Chang J. M. LP-Star: Embedding Longest Paths into Star Networks with Large-Scale Missing Edges under an Emerging Assessment Model. IEEE TETC, 2025, vol. 13, pp. 147–161. https://doi.org/10.1109/TETC.2024.3387119
  23. Kuznetsov A. P., Sataev I. R., Turukina L. V. Regional Structure of Two-and Three-Frequency Regimes in a Model of Four Phase Oscillators. Int. J. of Bifur. and Chaos, 2022, vol. 32, no. 3, art. 2230008. https://doi.org/10.1142/S0218127422300087
  24. Emelianova Y. P., Kuznetsov A. P., Turukina L. V., Sataev I. R., Chernyshov N. Y. A structure of the oscillation frequencies parameter space for the system of dissipatively coupled oscillators. Commun. Nonlinear Sci. Numer. Simul., 2014, vol. 19, iss. 4, pp. 1203–1212. https://doi.org/10.1016/j.cnsns.2013.08.004
  25. Ashwin P., Guaschi J., Phelps J. M. Rotation sets and phase-locking in an electronic three oscillator system. Physica D, 1993, vol. 66, iss. 3–4, pp. 392–411. https://doi.org/10.1016/0167-2789(93)90075-C
  26. Kuznetsov A. P., Turukina L. V., Sataev I. R., Chernyshov N. Y. Synchronization and multi-frequency quasi-periodicity in the dynamics of coupled oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics. 2014, vol. 22, no. 1, pp. 27–54 (in Russian). https://doi.org/10.18500/0869-6632-2014-22-1-27-54
Поступила в редакцию: 
27.11.2024
Принята к публикации: 
20.01.2025
Опубликована: 
30.06.2025