Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Devitsky O. V. Effect of nitrogen pressure on the composition and structure of thin films GaAs1 – x – yNxBiy. Izvestiya of Saratov University. Physics , 2023, vol. 23, iss. 4, pp. 365-370. DOI: 10.18500/1817-3020-2023-23-4-365-370, EDN: LQOJMC

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
25.12.2023
Full text:
(downloads: 151)
Language: 
English
Article type: 
Article
UDC: 
539.23
EDN: 
LQOJMC

Effect of nitrogen pressure on the composition and structure of thin films GaAs1 – x – yNxBiy

Autors: 
Devitsky Oleg V., Federal Research Center the Southern Scientific Centre of the Russian Academy of Sciences
Abstract: 

Thin films of GaAs1 – x – yNxBiy were deposited on a GaAs (100) substrate by pulsed laser deposition using an argon-nitrogen gas mixture at a pressure ranging from 1 to 60 Pa. The film thickness is found to decrease from 527 to 127 nm as the pressure of the argon-nitrogen gas mixture increased from 20 Pa to 60 Pa due to reflection and scattering of the plasma torch flow on nitrogen and argon atoms. The increase in pressure results in a significant decrease in the size and density of droplets on the film surface. All samples exhibit a polycrystalline structure, and the film obtained at a pressure of 60 Pa exhibits the highest crystalline perfection. The VASP software package was used to calculate theoretically the diffractogram for a (2×2×2) GaAs0.889N0.037Bi0.074 supercell, and it has been observed that the width at half maximum intensity for the GaAsNBi (004) reflection decreases with increasing pressure of the argon-nitrogen gas mixture. The nitrogen concentration in the thin film is found to increase linearly with the increase in the pressure of the argon-nitrogen gas mixture, which was established using X-ray diffraction and photoluminescence methods. The composition of the film obtained at a pressure of 60 Pa is determined to be GaAs0.957N0.012Bi0.021.

Acknowledgments: 
The publication was prepared as part of the implementation of the state task “Development of new semiconductor materials based on multicomponent solid solutions for photonic, optoelectronic and microwave applications” (state registration number 122020100326-7), as well as using the resources of the collective use center of the North Caucasus Federal University and the financial support of the Ministry of Science and Higher Education of the Russian Federation, unique project identifier RF-2296.61321X0029 (agreement No. 075-15-2021-687).
Reference: 
  1. Li H., Wang Z. M. Bismuth-Containing Compounds. Springer Series in Materials Science, vol. 186. Springer, New York, 2013. 383 p. https://doi.org/10.1007/978-1-4614-8121-8
  2. Wang L., Zhang L., Yue L., Liang D., Chen X., Li Y., Wang S. Novel dilute bismide, epitaxy, physical properties and device application. Crystals, 2017, vol. 7, no. 3, pp. 1–63. https://doi.org/10.3390/cryst7030063
  3. Tixier S., Webster S. E., Young E.C., Tiedje T., Francoeur S., Mascarenhas A., Wei P., Schiettekatte F. Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Applied Physics Letter, 2005, vol. 86, no. 11, article no. 112113. https://doi.org/10.1063/1.1886254
  4. Huang W., Oe K., Feng G., Yoshimoto M. Molecularbeam epitaxy and characteristics of GaNyAs1−x−yBix. Journal Applied Physics, 2005, vol. 98, article no. 053505. https://doi.org/10.1063/1.2032618
  5. Zhao C.-Z., Zhu M.-M., Sun X.-D., Wang S.-S., Wang J. The band gap energy of the dilute nitride alloy GaNxAsyP1−x−y (0 ⩽ x ⩽ 0.07, 0 ⩽ y ⩽ 1) depending on content. Applied Physics A, 2018, vol. 124, no. 2, article no. 216. https://doi.org/10.1007/s00339-018-1654-x
  6. Lu P., Liang D., Chen Y., Zhang C., Quhe R., Wang S. Closing the bandgap for III–V nitrides toward mid-infrared and THz applications. Scientific Reports, 2017, vol. 7, article no. 10594. https://doi.org/10.1038/s41598-017-11093-4
  7. Sweeney S. J., Jin S. R. Bismide-nitride alloys: Promising for efficient light emitting devices in the nearand midinfrared. Journal Applied Physics. 2013, vol. 113, no. 4, article no. 043110. https://doi.org/10.1063/1.4789624
  8. Yoshimoto M., Huang W., Feng G., Oe K. New semiconductor alloy GaNAsBi with temperature-insensitive bandgap. Physica Status Solidi (B): Basic Research, 2006, vol. 243, no. 7, pp. 1421–1425. https://doi.org/10.1002/pssb.200565270
  9. Bushell Z. L., Ludewig P., Knaub N., Batool Z., Hild K., Stolz W., Sweeney S. J., Volz K. Growth and characterisation of Ga(NAsBi) alloy by metal-organic vapour phase epitaxy. Journal of Crystal Growth, 2014, vol. 396, pp. 79–84. https://doi.org/10.1016/j.jcrysgro.2014.03.038
  10. Pashchenko A. S., Devitsky O. V., Lunin L. S., Kasyanov I. V., Nikulin D. A., Pashchenko O. S. Structure and morphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition. Thin Solid Films, 2022, vol. 743, article no. 139064. https://doi.org/10.1016/j.tsf.2021.139064
  11. Devitsky O. V. Peculiarities of pulsed laser deposition of thin InGaAsN films in an active background gas atmosphere. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1085–1091 (in Russian). https://doi.org/10.17586/2226-1494-2022-22-6-1085-1091
  12. Ma X. Y., Li D., Zhao Sh., Li G., Yang K. The electronic and optical properties of quaternary GaAs1−x−yNxBiy alloy lattice-matched to GaAs: A first-principles study. Nanoscale Research Letters, 2014, vol. 9, no. 1, article no. 580. https://doi.org/10.1186/1556-276X-9-580
  13. Kovalsky S. S., Denisov V. V., Ostroverkhov E. V., Prokop’ev V. E. Influence of the percentage of argon in the Ar–N2 gas mixture on the relative number of Ar+, N+2, N, and N+ particles in the plasma of a non-self-sustained low-pressure glow discharge with a hollow cathode. Russian Physics Journal, 2023, vol. 65, no. 11, pp. 1867–1874. https://doi.org/10.1007/s11182-023-02844-0
  14. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, vol. 44, no. 6, pp. 1272–1276. https://doi.org/10.1107/S0021889811038970
  15. Xu Q., Fan W., Kuo J. L. The natural valence band offset of dilute GaAs1−xNx and GaAs: The first-principles approach. Computational Materials Science, 2010, vol. 49, no. 1, pp. 150–152. https://doi.org/10.1016/j.commatsci.2010.03.039
  16. Yoshimoto M., Huang W., Takehara Y., Saraie J., Chayahara A., Horino Y., Kunishige O. E. New semiconductor GaNAsBi alloy grown by molecular beam epitaxy. Japanese Journal of Applied Physics, 2004, vol. 43, no. 7A, pp. L845–L847. https://doi.org/10.1143/JJAP.43.L845
  17. Tixier S., Webster S. E., Young E. C., Tiedje T., Francoeur S., Mascarenhas A., Wei P., Schiettekatte F. Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Applied Physics Letters, 2005, vol. 86, no. 11, article no. 112113. https://doi.org/10.1063/1.1886254
  18. Broderick C. A., Usman M., O’Reilly E. P. Derivation of 12- and 14-band k·p hamiltonians for dilute bismide and bismide-nitride semiconductors. Semiconductor Science and Technology, 2013, vol. 28, no. 12, article no. 125025. https://doi.org/10.1088/0268-1242/28/12/125025
Received: 
09.06.2023
Accepted: 
25.09.2023
Published: 
25.12.2023