Для цитирования:
Devitsky O. V. Effect of nitrogen pressure on the composition and structure of thin films GaAs1 – x – yNxBiy [Девицкий О. В. Влияние давления азота на состав и структуру тонких пленок GaAs1 – x – yNxBiy] // Известия Саратовского университета. Новая серия. Серия: Физика. 2023. Т. 23, вып. 4. С. 365-370. DOI: 10.18500/1817-3020-2023-23-4-365-370, EDN: LQOJMC
Effect of nitrogen pressure on the composition and structure of thin films GaAs1 – x – yNxBiy
[Влияние давления азота на состав и структуру тонких пленок GaAs1 – x – yNxBiy]
Методом импульсного лазерного напыления в атмосфере аргоно-азотной газовой смеси при давлении от 1 до 60 Па были получены тонкие пленки GaAs1 – x – yNxBiy на подложке GaAs (100). Установлено, что с увеличением давления аргоно-азотной газовой смеси от 20 до 60 Па толщина пленок снижалась с 527 до 127 нм в следствии отражения и рассеяния потока плазменного факела на атомах азота и аргона. Показано, что увеличение давления способствовало значительному снижению размеров и плотности капель на поверхности пленок. Все полученные пленки имеют поликристаллическую структуру, а наибольшим кристаллическим совершенством обладает тонкая пленка, полученная при давлении 60 Па. Был проведен теоретический расчет дифрактограммы для суперячейки размером 2×2×2 (64 атома) GaAs0.889N0.037Bi0.074 при помощи программного пакета VASP. Величина ширины на половине максимума интенсивности для рефлекса GaAsNBi (004) снижается с ростом давления аргоно-азотной газовой смеси. Установлено, что при повышении давления аргоно-азотной газовой смеси концентрации азота в тонкой пленке линейно возрастает. Методами рентгеновской дифракции и фотолюминисценции определен состав пленки, полученной при давления аргоно-азотной газовой смеси 60 Па – GaAs0.957N0.012Bi0.021.
- Li H., Wang Z. M. Bismuth-Containing Compounds. Springer Series in Materials Science, vol. 186. Springer, New York, 2013. 383 p. https://doi.org/10.1007/978-1-4614-8121-8
- Wang L., Zhang L., Yue L., Liang D., Chen X., Li Y., Wang S. Novel dilute bismide, epitaxy, physical properties and device application. Crystals, 2017, vol. 7, no. 3, pp. 1–63. https://doi.org/10.3390/cryst7030063
- Tixier S., Webster S. E., Young E.C., Tiedje T., Francoeur S., Mascarenhas A., Wei P., Schiettekatte F. Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Applied Physics Letter, 2005, vol. 86, no. 11, article no. 112113. https://doi.org/10.1063/1.1886254
- Huang W., Oe K., Feng G., Yoshimoto M. Molecularbeam epitaxy and characteristics of GaNyAs1−x−yBix. Journal Applied Physics, 2005, vol. 98, article no. 053505. https://doi.org/10.1063/1.2032618
- Zhao C.-Z., Zhu M.-M., Sun X.-D., Wang S.-S., Wang J. The band gap energy of the dilute nitride alloy GaNxAsyP1−x−y (0 ⩽ x ⩽ 0.07, 0 ⩽ y ⩽ 1) depending on content. Applied Physics A, 2018, vol. 124, no. 2, article no. 216. https://doi.org/10.1007/s00339-018-1654-x
- Lu P., Liang D., Chen Y., Zhang C., Quhe R., Wang S. Closing the bandgap for III–V nitrides toward mid-infrared and THz applications. Scientific Reports, 2017, vol. 7, article no. 10594. https://doi.org/10.1038/s41598-017-11093-4
- Sweeney S. J., Jin S. R. Bismide-nitride alloys: Promising for efficient light emitting devices in the nearand midinfrared. Journal Applied Physics. 2013, vol. 113, no. 4, article no. 043110. https://doi.org/10.1063/1.4789624
- Yoshimoto M., Huang W., Feng G., Oe K. New semiconductor alloy GaNAsBi with temperature-insensitive bandgap. Physica Status Solidi (B): Basic Research, 2006, vol. 243, no. 7, pp. 1421–1425. https://doi.org/10.1002/pssb.200565270
- Bushell Z. L., Ludewig P., Knaub N., Batool Z., Hild K., Stolz W., Sweeney S. J., Volz K. Growth and characterisation of Ga(NAsBi) alloy by metal-organic vapour phase epitaxy. Journal of Crystal Growth, 2014, vol. 396, pp. 79–84. https://doi.org/10.1016/j.jcrysgro.2014.03.038
- Pashchenko A. S., Devitsky O. V., Lunin L. S., Kasyanov I. V., Nikulin D. A., Pashchenko O. S. Structure and morphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition. Thin Solid Films, 2022, vol. 743, article no. 139064. https://doi.org/10.1016/j.tsf.2021.139064
- Devitsky O. V. Peculiarities of pulsed laser deposition of thin InGaAsN films in an active background gas atmosphere. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1085–1091 (in Russian). https://doi.org/10.17586/2226-1494-2022-22-6-1085-1091
- Ma X. Y., Li D., Zhao Sh., Li G., Yang K. The electronic and optical properties of quaternary GaAs1−x−yNxBiy alloy lattice-matched to GaAs: A first-principles study. Nanoscale Research Letters, 2014, vol. 9, no. 1, article no. 580. https://doi.org/10.1186/1556-276X-9-580
- Kovalsky S. S., Denisov V. V., Ostroverkhov E. V., Prokop’ev V. E. Influence of the percentage of argon in the Ar–N2 gas mixture on the relative number of Ar+, N+2, N, and N+ particles in the plasma of a non-self-sustained low-pressure glow discharge with a hollow cathode. Russian Physics Journal, 2023, vol. 65, no. 11, pp. 1867–1874. https://doi.org/10.1007/s11182-023-02844-0
- Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, vol. 44, no. 6, pp. 1272–1276. https://doi.org/10.1107/S0021889811038970
- Xu Q., Fan W., Kuo J. L. The natural valence band offset of dilute GaAs1−xNx and GaAs: The first-principles approach. Computational Materials Science, 2010, vol. 49, no. 1, pp. 150–152. https://doi.org/10.1016/j.commatsci.2010.03.039
- Yoshimoto M., Huang W., Takehara Y., Saraie J., Chayahara A., Horino Y., Kunishige O. E. New semiconductor GaNAsBi alloy grown by molecular beam epitaxy. Japanese Journal of Applied Physics, 2004, vol. 43, no. 7A, pp. L845–L847. https://doi.org/10.1143/JJAP.43.L845
- Tixier S., Webster S. E., Young E. C., Tiedje T., Francoeur S., Mascarenhas A., Wei P., Schiettekatte F. Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Applied Physics Letters, 2005, vol. 86, no. 11, article no. 112113. https://doi.org/10.1063/1.1886254
- Broderick C. A., Usman M., O’Reilly E. P. Derivation of 12- and 14-band k·p hamiltonians for dilute bismide and bismide-nitride semiconductors. Semiconductor Science and Technology, 2013, vol. 28, no. 12, article no. 125025. https://doi.org/10.1088/0268-1242/28/12/125025
- 457 просмотров