Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Garanin F. E., Khutieva A. B., Lomova M. V., Sadovnikov A. V. Control of spin wave propagation in a microwaveguide with a two-dimensional array of magnetic cylinders of variable configuration. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 1, pp. 4-11. DOI: 10.18500/1817-3020-2025-25-1-4-11, EDN: BRQHYM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.03.2025
Full text:
(downloads: 11)
Language: 
Russian
Article type: 
Article
UDC: 
537.876.4
EDN: 
BRQHYM

Control of spin wave propagation in a microwaveguide with a two-dimensional array of magnetic cylinders of variable configuration

Autors: 
Garanin Fedor Evgenyevich, Saratov State University
Khutieva Anna B., Saratov State University
Lomova Maria V., Saratov State University
Sadovnikov Alexander Vladimirovich, Saratov State University
Abstract: 

Background and Objectives: The development of magnonics, focusing on the transfer of magnetic moment or electron spin instead of charge, has opened new opportunities for the application of spin waves (SW) in the design of devices for data processing, transmission, and storage in the microwave and terahertz ranges. Yttrium iron garnet (YIG) films are used as the magnetic material for forming spin-waveguiding structures due to their exceptionally low SW damping, even at nanometer thicknesses. One promising approach to controlling SW is the use of two-dimensional arrays of magnetic nanostructures, such as cylinders and half-cylinders made of magnetite. Materials and Methods: This study involves numerical micromagnetic modeling of a microwave waveguide with an array of magnetite cylinders and half-cylinders on its surface. The modeling focuses on varying the geometric parameters of the nanostructures and the direction of the external magnetic field to investigate their influence on SW propagation characteristics. Magnetite was chosen due to its unique magnetic properties and compatibility with modern micro- and nanofabrication technologies. The micromagnetic modeling was based on the numerical solution of the Landau–Lifshitz–Gilbert equation. Results: The results of the modeling provide insights into the ability to predict and control SW behavior depending on the geometry of the magnetic elements and the orientation of the external magnetic field. This opens new perspectives for the development of highly efficient magnonic devices. Identifying optimal configurations for the cylinders and half-cylinders could lead to the creation of more compact and energy-efficient components for magnonic logic circuits and other applications in the field of magnonics. Conclusion: The study has presented a significant step towards the development of new magnonic devices operating on the principles of spin electronics. The findings offer potential for further exploration and optimization of spin wave dynamics in nanostructured waveguides, contributing to the advancement of magnonic technology.

Acknowledgments: 
The research was supported by the Russian Science Foundation (project No. 23-13-00373).
Reference: 
  1. Gurevich A. G. Magnitny rezonans v ferritakh i antiferromagnitakh [Magnetic resonance in ferrites and antiferromagnets]. Moscow, Nauka, 1973. 591 p. (in Russian).
  2. Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Åkerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., et al. Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics, 2022, vol. 58, no. 6, art. 0800172. https://doi.org/10.1109/TMAG.2022.3149664
  3. Stancil D. D., Prabhakar A. Spin Waves: Theory and Applications. New York, Springer, 2009. 348 p. https://doi.org/10.1007/978-0-387-77865
  4. Wang Q., Kewenig M., Schneider M., Verba R., Kohl F., Heinz B., Geilen M., Mohseni M., Lägel B., Ciubotaru F., Adelmann C., Dubs C., Cotofana S. D., Dobrovolskiy O. V., Brächer T., Pirro P., Chumak A. V. A magnonic directional coupler for integrated magnonic half-adders. Nature Electronics, 2020, vol. 3, pp. 765–774. https://doi.org/10.1038/s41928-020-00485-6
  5. Shone M. The technology of YIG film growth. Circuits Systems and Signal Process, 1985, vol. 4, pp. 89–103. https://doi.org/10.1007/BF01600074
  6. Sokolov N. S., Fedorov V. V., Korovin A. M., Suturin S. M., Baranov D. A., Gastev S. V., Krichevtsov B. B., Maksimova K. Yu., Grunin A. I., Bursian V. E., Lutsev L. V., Tabuchi M. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties. J. Appl. Phys., 2016, vol. 119, no. 2, art. 023903. https://doi.org/10.1063/1.4939678
  7. Stognij A. I., Lutsev L. V., Bursian V. E., Novitskii N. N. Growth and spin-wave properties of thin Y₃Fe₅O₁₂ films on Si substrates. J. Appl. Phys., 2015, vol. 118, no. 2, art. 023905. https://doi.org/10.1063/1.4926475
  8. Stognij A., Lutsev L., Novitskii N., Bespalov A., Golikova O., Ketsko V., Gieniusz R., Maziewski A. Synthesis, magnetic properties and spin-wave propagation in thin Y₃Fe₅O₁₂ films sputtered on GaN-based substrates. J. Appl. Phys. D: Applied Physics, 2015, vol. 48, no. 48, art. 485002. https://doi.org/10.1088/0022-3727/48/48/485002
  9. Amel’chenko M. D., Bir A. S., Ogrin F. Y., Odintsov S. A., Romanenko D. V., Sadovnikov A. V., Nikitov S. A., Grishin S. V. Magnetic metasurfaces with metallic inclusions. Izvestiya VUZ. Applied Nonlinear Dynamics, 2022, vol. 30, no. 5, pp. 563–591. https://doi.org/10.18500/0869-6632-003007
  10. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Waeyenberge B. The design and verification of MuMax3. AIP Advances, 2014, vol. 4, art. 107133. https://doi.org/10.1063/1.4899186
  11. Niculescu A.-G., Chircov C., Grumezescu A. M. Magnetite nanoparticles: Synthesis methods – A comparative review. Methods, 2022, vol. 199, pp. 16–27. https://doi.org/10.1016/j.ymeth.2021.04.018
  12. Trifoi A. R., Matei E., Râpă M., Berbecaru A.-C., Panaitescu C., Banu I., Doukeh R. Coprecipitation nanoarchitectonics for the synthesis of magnetite: A review of mechanism and characterization. Reaction Kinetics, Mechanisms and Catalysis, 2023, vol. 136, pp. 2835–2874. https://doi.org/10.1007/s11144-023-02514-9
  13. Hu J., Jia F., Liu W. Application of Fast Fourier Transform. HSET, 2023, vol. 38, pp. 590–597. https://doi.org/10.54097/hset.v38i.5888
  14. Venkat G., Fangohr H., Prabhakar A. Absorbing boundary layers for spin wave micromagnetics. J. Magnetism and Magnetic Materials, 2018, vol. 450, pp. 34–39. https://doi.org/10.1016/j.jmmm.2017.06.057
  15. Dvornik M., Kuchko A. N., Kruglyak V. V. Micromagnetic method of s-parameter characterization of magnonic devices. J. Appl. Phys., 2011, vol. 109, iss. 7, art. 07D350. https://doi.org/10.1063/1.3562519
  16. Bustamante-Torres M., Romero-Fierro D., Estrella-Nuñez J., Arcentales-Vera B., Chichande-Proaño E., Bucio E. Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomeditsine: A Review. Polymers, 2022, vol. 14, art. 752. https://doi.org/10.3390/polym14040752
  17. Ganapathe L. S., Mohamed M. A., Mohamad Yunus R., Berhanuddin D. D. Magnetite (Fe₃O₄) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry, 2020, vol. 6, iss. 4, art. 68. https://doi.org/10.3390/magnetochemistry6040068
  18. Włodarczyk A., Gorgoń S., Radoń A., Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. Nanomaterials, 2022, vol. 12, iss. 11, art. 1807. https://doi.org/10.3390/nano12111807
  19. Petrov K. D., Chubarov A. S. Magnetite Nanoparticles for Biomedical Applications. Encyclopedia, 2022, vol. 2, iss. 4, pp. 1811–1828. https://doi.org/10.3390/encyclopedia2040125
  20. Bilgic A., Cimen A. Two Novel BODIPY-Functional Magnetite Fluorescent Nano-Sensors for Detecting of Cr(VI) Ions in Aqueous Solutions. J. Fluoresc., 2020, vol. 30, no. 4, pp. 867–881. https://doi.org/10.1007/s10895-020-02559-2
  21. Bilgic A., Cimen A. A highly sensitive and selective ON-OFF fluorescent sensor based on functionalized magnetite nanoparticles for detection of Cr(VI) metal ions in the aqueous medium. J. Molecular Liquids, 2020, vol. 312, art. 113398. https://doi.org/10.1016/j.molliq.2020.113398
  22. Mbeh D. A., França R., Merhi Y., Zhang X. F., Veres T., Sacher E., Yahia L. In vitro biocompatibility assessment of functionalized magnetite nanoparticles: Biological and cytotoxicological effects. J. Biomed. Mater. Res. Part A, 2012, vol. 100A, pp. 1637–1646. https://doi.org/10.1002/jbm.a.34096 
Received: 
01.03.2024
Accepted: 
03.10.2024
Published: 
31.03.2025