Известия Саратовского университета.

Новая серия. Серия Физика

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


Для цитирования:

Гаранин Ф. Е., Хутиева А. Б., Ломова М. В., Садовников А. В. Управление распространением спиновых волн в микроволноводе с двумерным массивом магнитных микрочастиц различной геометрии // Известия Саратовского университета. Новая серия. Серия: Физика. 2025. Т. 25, вып. 1. С. 4-11. DOI: 10.18500/1817-3020-2025-25-1-4-11, EDN: BRQHYM

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
31.03.2025
Полный текст в формате PDF(Ru):
(загрузок: 15)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
537.876.4
EDN: 
BRQHYM

Управление распространением спиновых волн в микроволноводе с двумерным массивом магнитных микрочастиц различной геометрии

Авторы: 
Гаранин Федор Евгеньевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Хутиева Анна Борисовна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Ломова Мария Владимировна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Садовников Александр Владимирович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Рассматриваются возможности применения спиновых волн в магнонике для создания элементной базы устройств обработки, передачи и хранения информации в микроволновом и терагерцевом диапазонах. В качестве основного материала используются пленки железо-иттриевого граната, обладающие низким затуханием спиновых волн даже при нанометровых толщинах. Перспективным подходом к управлению СВ является использование двумерных массивов магнитных наноструктур, таких как цилиндры и полуцилиндры из магнетита. Проведено численное микромагнитное моделирование микроволновода с массивом цилиндров и полуцилиндров из магнетита на основе решения уравнения Ландау–Лифшица–Гильберта. Основное внимание уделено варьированию геометрических параметров и направления внешнего магнитного поля для изменения характеристик спиновых волн. Результаты моделирования открывают новые возможности для разработки магнонных устройств с высокой энергоэффективностью и компактными размерами.

Благодарности: 
Работа выполнена при финансовой поддержке Российского научного фонда (проект № 23-13-00373).
Список источников: 
  1. Гуревич А. Г. Магнитный резонанс в ферритах и антферромагнетиках. М. : Наука, 1973. 591 с.
  2. Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Åkerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A. et al. Advances in Magnetics Roadmap on Spin-Wave Computing // IEEE Transactions on Magnetics. 2022. Vol. 58, № 6. Art. 0800172. https://doi.org/10.1109/TMAG.2022.3149664
  3. Stancil D. D., Prabhakar A. Spin Waves: Theory and Applications. New York : Springer, 2009. 348 p. https://doi.org/10.1007/978-0-387-77865
  4. Wang Q., Kewenig M., Schneider M., Verba R., Kohl F., Heinz B., Geilen M., Mohseni M., Lägel B., Ciubotaru F., Adelmann C., Dubs C., Cotofana S. D., Dobrovolskiy O. V., Brächer T., Pirro P., Chumak A. V. A magnonic directional coupler for integrated magnonic half-adders // Nature Electronics. 2020. Vol. 3. P. 765–774. https://doi.org/10.1038/s41928-020-00485-6
  5. Shone M. The technology of YIG film growth // Circuits Systems and Signal Process. 1985. Vol. 4. P. 89–103. https://doi.org/10.1007/BF01600074
  6. Sokolov N. S., Fedorov V. V., Korovin A. M., Suturin S. M., Baranov D. A., Gastev S. V., Krichevtsov B. B., Maksimova K. Yu., Grunin A. I., Bursian V. E., Lutsev L. V., Tabuchi M. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties // Journal of Applied Physics. 2016. Vol. 119, iss. 2. Art. 023903. https://doi.org/10.1063/1.4939678
  7. Stognij A. I., Lutsev L. V., Bursian V. E., Novitskii N. N. Growth and spin-wave properties of thin Y₃Fe₅O₁₂ films on Si substrates // Journal of Applied Physics. 2015. Vol. 118, № 2. Art. 023905. https://doi.org/10.1063/1.4926475
  8. Stognij A., Lutsev L., Novitskii N., Bespalov A., Golikova O., Ketsko V., Gieniusz R., Maziewski A. Synthesis, magnetic properties and spin-wave propagation in thin Y₃Fe₅O₁₂ films sputtered on GaN-based substrates // Journal of Physics D: Applied Physics. 2015. Vol. 48, № 48. Art. 485002. https://doi.org/10.1088/0022-3727/48/48/485002
  9. Амельченко М. Д., Бир А. С., Огрин Ф. Ю., Одинцов С. А., Романенко Д. В., Садовников А. В., Никитов С. А., Гришин С. В. Магнитные метаповерхности с металлическими включениями // Известия высших учебных заведений. Прикладная нелинейная динамика. 2022. Т. 30, № 5. С. 563–591. https://doi.org/10.18500/0869-6632-003007
  10. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Waeyenberge B. The design and verification of MuMax3 // AIP Advances. 2014. Vol. 4, iss. 8. Art. 107133. https://doi.org/10.1063/1.4899186
  11. Niculescu A.-G., Chircov C., Grumezescu A. M. Magnetite nanoparticles: Synthesis methods – A comparative review // Methods. 2022. Vol. 199. P. 16–27. https://doi.org/10.1016/j.ymeth.2021.04.018
  12. Trifoi A. R., Matei E., Râpă M., Berbecaru A.-C., Panaitescu C., Banu I., Doukeh R. Coprecipitation nanoarchitectonics for the synthesis of magnetite: A review of mechanism and characterization // Reaction Kinetics, Mechanisms and Catalysis. 2023. Vol. 136. P. 2835–2874. https://doi.org/10.1007/s11144-023-02514-9
  13. Hu J., Jia F., Liu W. Application of Fast Fourier Transform // High Science and Technology. 2023. Vol. 38. P. 590–597. https://doi.org/10.54097/hset.v38i.5888
  14. Venkat G., Fangohr H., Prabhakar A. Absorbing boundary layers for spin wave micromagnetics // Journal of Magnetism and Magnetic Materials. 2018. Vol. 450. P. 34–39. https://doi.org/10.1016/j.jmmm.2017.06.057
  15. Dvornik M., Kuchko A. N., Kruglyak V. V. Micromagnetic method of s-parameter characterization of magnonic devices // Journal of Applied Physics. 2011. Vol. 109, iss. 7. Art. 07D350. https://doi.org/10.1063/1.3562519
  16. Bustamante-Torres M., Romero-Fierro D., Estrella-Nuñez J., Arcentales-Vera B., Chichande-Proaño E., Bucio E. Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomeditsine: A Review // Polymers. 2022. Vol. 14. Art. 752. https://doi.org/10.3390/polym14040752
  17. Ganapathe L. S., Mohamed M. A., Mohamad Yunus R., Berhanuddin D. D. Magnetite (Fe₃O₄) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation // Magnetochemistry. 2020. Vol. 6, iss. 4. Art. 68. https://doi.org/10.3390/magnetochemistry6040068
  18. Włodarczyk A., Gorgoń S., Radoń A., Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives // Nanomaterials. 2022. Vol. 12, iss. 11. Art. 1807. https://doi.org/10.3390/nano12111807
  19. Petrov K. D., Chubarov A. S. Magnetite Nanoparticles for Biomedical Applications // Encyclopedia. 2022. Vol. 2, iss. 4. P. 1811–1828. https://doi.org/10.3390/encyclopedia2040125
  20. Bilgic A., Cimen A. Two Novel BODIPY-Functional Magnetite Fluorescent Nano-Sensors for Detecting of Cr(VI) Ions in Aqueous Solutions // Journal of Fluorescence. 2020. Vol. 30, № 4. P. 867–881. https://doi.org/10.1007/s10895-020-02559-2
  21. Bilgic A., Cimen A. A Highly Sensitive and Selective ON-OFF Fluorescent Sensor Based on Functionalized Magnetite Nanoparticles for Detection of Cr(VI) Metal Ions in the Aqueous Medium // Journal of Molecular Liquids. 2020. Vol. 312. Art. 113398. https://doi.org/10.1016/j.molliq.2020.113398
  22. Mbeh D. A., França R., Merhi Y., Zhang X. F., Veres T., Sacher E., Yahia L. In Vitro Biocompatibility Assessment of Functionalized Magnetite Nanoparticles: Biological and Cytotoxicological Effects // Journal of Biomedical Materials Research. Part A. 2012. Vol. 100A. P. 1637–1646. https://doi.org/10.1002/jbm.a.34096
Поступила в редакцию: 
01.03.2024
Принята к публикации: 
03.10.2024
Опубликована: 
31.03.2025