Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Romanenko D. V., Grishin S. V. Coherent resonance in the modified Vyshkind – Rabinovich model. Izvestiya of Saratov University. Physics , 2025, vol. 25, iss. 3, pp. 295-304. DOI: 10.18500/1817-3020-2025-25-3-295-304, EDN: HPVUSK

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
29.08.2025
Full text:
(downloads: 117)
Language: 
Russian
Article type: 
Article
UDC: 
530.182:537.86
EDN: 
HPVUSK

Coherent resonance in the modified Vyshkind – Rabinovich model

Autors: 
Romanenko Dmitrii Vladimirovich, Saratov State University
Grishin Sergei V., Saratov State University
Abstract: 

Background and Objectives: The paper presents the results of theoretical study of the coherence resonance phenomenon in the modified Vyshkind – Rabinovich model. The model describes the chaotic dynamics of three parametrically interacting modes one of that (a high-frequency mode) is amplified and the other two (the low-frequency modes) are linearly damped. Materials and Methods: To observe the coherence resonance, one of the parameters of the modified Vyshkind – Rabinovich model (the high-frequency mode nonlinear increment) is modulated by noise possessing a uniform spectrum in a bounded frequency band. Results: The calculation results demonstrate an autocorrelation time maximum of the chaotic high-frequency mode envelope that is observed at an optimal level of external noise influence. Conclusion: The proposed method for coherence resonance implementation can be extended to noise-suppressed chaotic systems of another type.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 23-22-00274).
Reference: 
  1. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series. Cambridge, Cambridge University Press, 2001, vol. 12. xx+411 p. https://doi.org/10.1017/CBO9780511755743
  2. Pikovsky A., Kurths J. Coherence resonance in a noise driven excitable system. Phys. Rev. Lett., 1997, vol. 78, no. 5, pp. 775–778. https://doi.org/10.1103/PhysRevLett.78.775
  3. Lindner B., Schimansky-Geier L. Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys. Rev. E, 1999, vol. 60, no. 6, pp. 7270–7276. https://doi.org/10.1103/PhysRevE.60.7270
  4. Lee S. G., Neiman A., Kim S. Coherence resonance in a Hodgkin-Huxley neuron. Phys. Rev. E, 1998, vol. 57, no. 3, pp. 3292–3297. https://doi.org/10.1103/PhysRevE.57.3292
  5. Zhou L. Q., Jia X., Ouyang Q. Experimental and numerical studies of noise-induced coherent patterns in a subexcitable system. Phys. Rev. Lett., 2002, vol. 88, no. 13, art. 138301. https://doi.org/10.1103/PhysRevLett.88.138301
  6. Dubbeldam J. L. A., Krauskopf B., Lenstra D. Excitability and coherence resonance in lasers with saturable absorber. Phys. Rev. E, 1999, vol. 60, no. 6. pp. 6580–6588. https://doi.org/10.1103/PhysRevE.60.6580
  7. Hizanidis J., Balanov A. G., Amann A., Schöll E. Noise-induced front motion: Signature of a global bifurcation. Phys. Rev. Lett., 2006, vol. 96, no. 24, art. 244104. https://doi.org/10.1103/PhysRevLett.96.244104
  8. Han S. K., Yim T. G., Postnov D. E., Sosnovtseva O. V. Interacting coherence resonance oscillators. Phys. Rev. Lett., 1999, vol. 83, no. 9, pp. 1771–1774. https://doi.org/10.1103/PhysRevLett.83.1771
  9. Giacomelli G., Giudici M., Balle S., Tredicce J. R. Experimental evidence of coherence resonance in an optical system. Phys. Rev. Lett., 2000, vol. 84, no. 15, pp. 3298–3301. https://doi.org/10.1103/PhysRevLett.84.3298
  10. Dmitriev B. S., Zharkov Yu. D., Sadovnikov S. A., Skorokhodov V. N., Stepanov A. O. Coherent resonance in klystron oscillator at self-excitation threshold. Tech. Phys. Lett., 2011, vol. 37, no. 11, pp. 1082–1085. https://doi.org/10.1134/S1063785011110216
  11. Palenzuela C., Toral R., Mirasso C. R., Calvo O., Gunton J. D. Coherence resonance in chaotic systems. Europhys. Lett., 2001, vol. 56, no. 3, pp. 347–353. https://doi.org/10.1209/epl/i2001-00526-5
  12. Calvo O., Mirasso C. R., Toral R. Coherence resonance in chaotic electronic circuits. Electron. Lett., 2001, vol. 37, no.17, pp. 1062–1063. https://doi.org/10.1049/el:20010735
  13. Liu Z., Lai Y.-C. Coherence resonance in coupled chaotic oscillators. Phys. Rev. Lett., 2001, vol. 86, no. 21, pp. 4737–4740. https://doi.org/10.1103/PhysRevLett.86.4737
  14. Neymark Yu. I., Landa P. S. Stokhasticheskie i khaoticheskie kolebaniya [Stochastic and chaotic oscillations. 2nd ed., suppl.]. Moscow, Knizhnyy dom “LIBROKOM”, 2009. 424 p. (in Russian).
  15. Anishchenko V. V., Astakhov V. V., Neiman A. B., Vadivasova T. E., Strelkova G. I., Schimansky-Geier L. Nelinejnye effekty v khaoticheskikh i stokhasticheskikh sistemakh [Nonlinear effects in chaotic and stochastic systems]. Izhevsk, Institute of Computer Research Publ., 2003. 544 p. (in Russian).
  16. Grishin S. V., Nikitov S. A., Romanenko D. V., Khudolozhkin V. O., Sharaevskii Yu. P. Generation of single chaotic microwave pulses in a self-oscillating ring system with ferromagnetic film under the action of external noise. Tech. Phys. Lett., 2013, vol. 39, no. 4, pp. 321–324. https://doi.org/10.1134/S1063785013040056
  17. Demidov V. E., Kovshikov N. G. Mechanism for the appearance and randomization of the self-modulation of high-intensity spin waves, Tech. Phys., 1999, vol. 44, iss. 8, pp. 960–963. https://doi.org/10.1134/1.1259413
  18. Kuznetsov S. P., Turukina L. V. Complex dynamics and chaos in electronic self-oscillator with saturation mechanism provided by parametric decay. Izvestiya VUZ. Applied Nonlinear Dynamics, 2018, vol. 26, no. 1, pp. 33–47. https://doi.org/10.18500/0869-6632-2018-26-1-33-47
  19. Turukina L. V. Parametric interaction of modes in the presence of quadratic or cubic nonlinearity. Izvestiya VUZ. Applied Nonlinear Dynamics, 2024, vol. 32, no. 1, pp. 11–30. https://doi.org/10.18500/0869-6632-003082
  20. Komkov P. S., Moskalenko O. I., Grishin S. V. Self-Generation of dark and bright envelope pulses in bidirectionally coupled Vyshkind-Rabinovich parametric oscillators. Tech. Phys. Lett., 2024, vol. 50, no. 1, pp. 70–73. https://doi.org/10.61011/TPL.2024.01.57840.19668
  21. Bir A. S., Grishin S. V., Grachev A. A., Moskalenko O. I., Pavlov A. N., Romanenko D. V., Skorokhodov V. N., Nikitov S. A. Direct electric current control of hyperchaotic packets of dissipative dark envelope solitons in a magnonic crystal active ring resonator. Phys. Rev. Appl., 2024, vol. 21, no. 4, art. 044008. https://doi.org/10.1103/PhysRevApplied.21.044008
  22. Vyshkind S. Ya., Rabinovich M. I. The phase stochastization mechanism and the structure of wave turbulence in dissipative media. JETP, 1976, vol. 44, no. 2, pp. 292–299.
  23. Grishin S. V., Sharaevskii Yu. P., Nikitov S. A., Romanenko D. V. Generation of chaotic microwave pulses in ferromagnetic film ring oscillators under external influence. IEEE Trans. on Magnetics, 2013, vol. 49, no. 3, pp. 1047–1054. https://doi.org/10.1109/TMAG.2012.2228634
  24. RF Patent No. 2349027 IPC H03K3/84. Method for generating high-power chaotic radio pulses for direct chaotic communication systems. Declared July 25, 2007, published March 10, 2009. Dmitriev B. S., Zharkov Yu. D., Skorokhodov V. N. Patent Holder : Saratov State University. Available at: https://www.freepatent.ru/patents/2349027 (accessed June 27, 2025).
  25. Grishin S. V., Dmitriev B. S., Zharkov Yu. D., Manyshev R. A., Skorokhodov V. N. Chaotic microwave pulse generation in wideband spin-wave and vacuum oscillators of chaos under external periodical influence. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, no. 5, pp. 137–155. https://doi.org/10.18500/0869-6632-2012-20-5-137-155
  26. Nikitin N. N., Pervachev S. V., Razevig V. D. On computer solutiuon of stochastic differential equations for flow-up systems. Avtomatika i telemekhanika, 1975, no. 4, pp. 133–137 (in Russian).
  27. Hammer P., Platt N., Hammel D., Heagy J., Lee B. Experimental observation of on-off intermittency. Phys. Rev. Lett., 1994, vol. 73, no. 8, pp. 1095–1098. https://doi.org/10.1103/PhysRevLett.73.1095
  28. Heagy J. F., Platt N., Hammel S. M. Characterization of on-off intermittency. Phys. Rev. E, 1994, vol. 49, no. 2, pp. 1140–1150. https://doi.org/10.1103/PhysRevE.49.1140
  29. Legenstein R., Maass W. Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw., 2007, vol. 20, iss. 3, pp. 323–334. https://doi.org/10.1016/j.neunet.2007.04.017
Received: 
22.11.2024
Accepted: 
15.05.2025
Published: 
29.08.2025