Izvestiya of Saratov University.

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

Cite this article as:

Tsoy V. I. AD HOC Quantization of the Electromagnetic Momentum for a Dispersive Medium. //Izvestiya of Saratov University. New series. Series: Physics. , 2017, vol. 17, iss. 1, pp. 5-10. DOI:

535.14; 537.8

AD HOC Quantization of the Electromagnetic Momentum for a Dispersive Medium

Tsoy Valery Ivanovich, Saratov State University

Background and Objectives: There are two types of linear field momentum in the macroscopic electrodynamics: Minkowski momentum, and Abraham momentum. The first is conserved inside the uniform substance, the second is included into the momentum balance in relation to the center of energy. These two quantities must comply with two measures of photon momentum. Unfortunately, the ad hoc quantization of the Minkowski momentum in dispersive medium leads to the theoretical photon momentum, which differs from the observed momentum. To overcome the discrepancy, it was assumed that field quanta are polaritons in medium with dispersion, and the photon momentum is defined by momenta of these polaritons. Methods: This paper proposes another way to eliminate the inconsistency between experimental photon momentum and photon momentum in the ad hoc quantization scheme. The assumption about polaritons is not used in this approach. Results and Conclusion: It is shown that a generalization of Minkowski momentum formula is needed in the quantization scheme for а transparent dispersive medium. The factor that takes into account the dispersion should be used in the formula. This factor exactly the multiplier that translates the field energy density in nondispersive medium into the energy density in dispersive one. The proposed quantization scheme also applied to the case of materials with negative permittivity and permeability (left-handed media).

  1. Landau L. D., Lifshitz E. M., Pitaevskii L. P. Electrodynamics of Continuous Media, 2nd ed. Vol. 8. Butterworth–Heinemann, 1984. 460 p. (Russ. ed.: Landau L. D., Lifshits E. M. Elektrodinamika sploshnykh sred [Electrodynamics of Continuous Media]. Moscow: Nauka Publ., 1982. 620 p.).
  2. Tamm I. E. Osnovy teorii elektrichestva [Principles of theory of electricity]. Moscow, Nauka Publ., 1989. 504 p. (in Russian).
  3. Feynman R., Leighton R., Sands M. The Feynman Lectures on Physics. Vol. 2. Addison-Wesley, 1964. 536 p. (Russ. ed.: Feynman R., Leyton R., Sends M. Feynmanovskie lektsii po fi zike. Elektrichestvo [The Feinman Lectures on Physics. Electricity]. Moscow, Mir Publ., 1966. 343 p.
  4. Griffi ts D. J. Resource Letter EM-1: Electromagnetic Momentum. Amer. J. Phys., 2012, vol. 80, pp. 7‒18. DOI:
  5. Skobel’tsyn D. V. The momentum-energy tensor of the electromagnetic fi eld. UFN [Phys. Usp.], 1973, vol. 110, pp. 253‒292. DOI: (in Russian). 
  6. Ginzburg V. L. The laws of conservation of energy and momentum in emission on electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics. UFN [Phys. Usp.], 1973, vol. 110, pp. 309‒319. DOI: (in Russian).
  7. Veselago V. G. Energy, linear momentum and mass transfer by an electromagnetic wave in a negative refraction medium]. UFN [Phys. Usp.], 2009, vol. 179, pp. 689‒694. DOI: (in Russian).
  8. Makarov V. P., Rukhadze A. A. Force on matter in an electromagnetic fi eld. UFN [Phys. Usp.], 2009. vol. 179, pp. 995‒1001. DOI: (in Russian).
  9. Davidovich M. V. On energy and momentum conservation laws for an electromagnetic fi eld in a medium or at diffraction on a conducting plate. UFN [Phys. Usp.], 2010, vol. 180, pp. 623‒638. DOI: (in Russian).
  10. Toptygin I. N., Levina K. Energy-momentum tensor of the electromagnetic fi eld in dispersive media. UFN [Phys. Usp.], 2016, vol. 59, pp. 141‒152. DOI: (in Russian).
  11. Walker G. B., Lahoz D. G. Experimental observation of Abraham force in a dielectric. Nature, 1975, vol. 253, pp. 339‒340.
  12. She W., Yu J., Feng R. Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light. Phys. Rev. Lett., 2008, vol. 101, pp. 243601. DOI:
  13. Jones R. V., Leslie B. The measurement of optical radiation pressure in dispersive media. Proc. R. Soc. Lond. A, 1978, vol. 360, pp. 347‒363. DOI:
  14. Frank I. M. Optika istochnikov sveta dvizhuschikhsya v prelomlyayuschikhsya sredakh [Optics Light Sources Moving in Refractive Media], UFN, 1959, vol. 68, pp. 397–415 (in Russian).
  15. Pafomov V. E. Transition Radiation and Cerenkov Radiation. Soviet Physics JETF, 1959, vol. 36, pp. 1321‒1324.
  16. Shеng Xi, Hongsheng Chen, Tao Jian., Lixin Ran, Jiangtao Huangfu, Bac-Ian Wu, Jin Au Kong, Min Chen. Experimental Verifi cation of Reversed Cherenkov Radiation in Left-Handed Metamaterial. Phys. Rev. Lett., 2009, vol. 103, pp. 194801. DOI:
  17. Campbell G. K., Leanhardt A.E., Mun J., Boyd M., Streed W., Ketterle W., Pritchhard D. E. Photon Recoil Momentum in Dispersive Media. Phys. Rev. Lett., 2005, vol. 94, pp. 170403. DOI:
  18. Steinberg A. M., Kwiat P. G., Chiao R. Y. Dispersion Cancellation in a Measurement of the Single-Photon Propagation Velocity in Glass. Phys. Rev. Lett., 1992, vol. 68, pp. 2421‒2424. DOI:
  19. Garrison J. C., Chiao R. Y. Canonical and kinetic forms of the electromagnetic momentum in an ad hoc quantization scheme for a dispersive dielectric. Phys. Rev. A., 2004, vol. 70, pp. 053826. DOI:
  20. Barnett S. M. Resolution of the Abraham-Minkowski Dilemma. Phys. Rev. Lett., 2010, vol. 104, pp. 070401. DOI:
  21. Wen Zhuo Zhang, Peng Zhang, Ru-Quan Wang, Wu-Ming Liu. Testing the equivalence between the canonical and Minkowski momentum of light with ultracold atoms . Phys. Rev. A, 2012, vol. 85, pp. 053604. DOI:
  22. Milonni P. W. Boyd R. W. Recoil and Photon Momentum in a Dielectric. Laser Physics, 2005, vol. 15, pp. 1432‒1438.
Short text (in English):
(downloads: 12)
Full text:
(downloads: 14)