For citation:
Ponomarenko V. I., Lapsheva E. E., Navrotskaya E. V., Ishbulatov Y. M., Prokhorov M. D. Communication Systems with Correlation Receiver Based on Generators with Dynamical Chaos. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 3, pp. 202-209. DOI: 10.18500/1817-3020-2020-20-3-202-209
Communication Systems with Correlation Receiver Based on Generators with Dynamical Chaos
Background and Objectives: The object of research is communication systems based on the methods of correlation receiving. The aim of the study is a comparative assessment of the noise immunity of three different information transmission systems at the same levels of external noise. Materials and Methods: The methods of numerical simulation of time-delay systems are used. For the self-oscillating systems with delay, the approach based on correlation receiving is used for communication systems. Results: It is shown that the principle of correlation receiver, which is applied in classical communication systems, can also be used in the case when chaotic signals generated by self-oscillating systems with complex behavior are taken as reference signals. Conclusion: The noise immunity of the communication system based on the methods of correlation receiving and dynamical chaos is close the noise immunity of a classical communication system.
- Andreev Yu. V., Gulyaev Yu. V., Kuzmin L. V., Dmitriev A. S., Efremova E. V., Kuzmin L. V., Lazarev V. A., Ryzhov A. I., Mokhseni T. I. Processy peredachi i obrabotki informatsii v sistemakh so slojnoi dinamikoi [Processes of information transmission and processing in systems with complex dynamics]. A. S. Dmitriev, E. V. Efremova, eds. Moscow, Technosfera Publ., 2019. 320 p. (in Russian).
- Koronovskii A. A., Moskalenko O. I., Hramov A. E. On the use of chaotic synchronization for secure communication. Physics – Uspekhi, 2009, vol. 52, pp. 1213–1238. DOI: https://doi.org/10.3367/UFNe.0179.200912c.1281
- Ren H.-P., Bai C., Liu J., Baptista M. S., Grebogi C. Experimental validation of wireless communication with chaos. Chaos, 2016, vol. 26, 083117. DOI: https://doi.org/10.1063/1.4960787
- Kul’minskii D. D., Ponomarenko V. I., Karavaev A. S., Prokhorov M. D. Noise-Resistant System of Concealed Information Transfer on a Chaotic Delayed Feedback Oscillator with Switchable Delay Time. Technical Physics, 2016, vol. 61, no. 5, pp. 639–647. DOI: https://doi.org/10.1134/S1063784216050121
- Yao J.-L., Li C., Ren H.-P., Grebogi C. Chaos-based wireless communication resisting multipath effects. Physical Review E, 2017, vol. 96, 032226. DOI: https://doi.org/10.1103/PhysRevE.96.032226
- Carroll T. L. Chaos for low probability of detection communications, Chaos, Solitons & Fractals, 2017, vol. 103, pp. 238–245. DOI: https://doi.org/10.1016/j.chaos.2017.06.011
- Kolumban G., Kennedy M. P. The role of synchronization in digital communication using chaos-part II: Chaotic modulation and chaotic synchronization. IEEE Trans. On Circuits and Systems – I: Fundamental Theory and Applications, 1998, vol. 45, no. 11, pp. 1129– 1140.
- Tao Y. A survey of chaotic secure communication systems. Int. J. Comput. Cogn., 2004, vol. 2, no. 2, pp. 81–130.
- Wang M., Wang X., Pei B. A new digital communication scheme based on chaotic modulation. Nonlinear Dynamics, 2012, vol. 67, pp. 1097–1104. DOI: https://doi.org/10.1007/s11071-011-0053-z
- Kolumban G., Kennedy M. P. The role of synchronization in digital communication using chaos-part III: Performance bounds for correlation receivers. IEEE Trans. On Circuits and Systems – I: Fundamental Theory and Applications, 2000, vol. 47, no. 12, pp. 1673–1683.
- Kapranov M. V., Tomashevskiy A. I. System of hidden communication using correlation receiver and synchronous chaotic response. Electromagnetic Waves and Electronic Systems, 2003, vol. 8, no. 3. pp. 35–48 (in Russian).
- Rohdea G. K., Nichols J. M., Bucholtz F. Chaotic signal detection and estimation based on attractor sets: Applications to secure communications. Chaos, 2008, vol. 18, 013114. DOI: https://doi.org/10.1063/1.2838853
- Corron N. J., Blakely J. N., Stahl M. T. A matched fi lter for chaos. Chaos, 2010, vol. 20, 023123. DOI: https://doi.org/10.1063/1.3432557
- Carroll T. L., Rachford F. J. Chaotic sequences for noisy environments. Chaos, 2016, vol. 26, 103104. DOI: https://doi.org/10.1063/1.4964348
- Prokhorov M. D., Ponomarenko V. I., Kulminskiy D. D., Koronovskii A. A., Moskalenko O. I., Hramov A. E. Resistant to noise chaotic communication scheme exploiting the regime of generalized synchronization. Nonlinear Dynamics, 2017, vol. 87, no. 3, pp. 2039–2050. DOI: https://doi.org/10.1007/s11071-016-3174-6
- Sklar B. Digital Communications: Fundamentals and Applications. 2nd ed. Los Angeles, University of California, 2001. 1104 p.
- Ikeda K., Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D, 1987, vol. 29, pp. 223–235. DOI: https://doi.org/10.1016/0167-2789(87)90058-3
- Ponomarenko V. I., Navrotskaya E. V., Kul’minskii D. D., Prokhorov M. D. Estimation of confidentiality of a communication system based on chaotic time-delay generator with switchable delay time. Informatsionnoupravliaiushchie sistemy [Information and Control Systems], 2019, no. 4, pp. 54–61 (in Russian). DOI: https://doi.org/10.31799/1684-8853-2019-4-54-61
- Hou T. T., Yi L. L., Yang X. L., Ke J. X., Hu Y., Yang Q., Zhou P., Hu W. S. Maximizing the security of chaotic optical communications. Optics Express, 2016, vol. 24, no. 20, 23439. DOI: https://doi.org/10.1364/OE.24.023439
- Chub R. O., Ponomarenko V. I., Prokhorov M. D. Method for information transmission using a predictive model in coupled time-delay systems. Izv. Saratov Univ. (N. S.), Ser. Physics, 2018, vol. 18, iss. 2, pp. 84–91 (in Russian). DOI: https://doi.org/10.18500/1817-3020-2018-18-2-84-91
- Dmitriev A. S., Panas A. I. Dinamicheskii haos: novye nositeki infornatsii dlya system sviazi [Dynamic chaos: new storage media for communication systems]. Moscow, Fizmatlit Publ., 2002. 252 p. (in Russian).
- 1351 reads