Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Ponomarenko V. I., Lapsheva E. E., Navrotskaya E. V., Ishbulatov Y. M., Prokhorov M. D. Communication Systems with Correlation Receiver Based on Generators with Dynamical Chaos. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 3, pp. 202-209. DOI: 10.18500/1817-3020-2020-20-3-202-209

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.08.2020
Full text:
(downloads: 312)
Language: 
Russian
UDC: 
621.37

Communication Systems with Correlation Receiver Based on Generators with Dynamical Chaos

Autors: 
Ponomarenko Vladimir Ivanovich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Lapsheva Elena Evgen'evna, Saratov State University
Navrotskaya Elena Vladimirovna, Saratov State University
Ishbulatov Yurii Mikhailovich, Saratov State University
Prokhorov Mikhail Dmitrievich, Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences
Abstract: 

Background and Objectives: The object of research is communication systems based on the methods of correlation receiving. The aim of the study is a comparative assessment of the noise immunity of three different information transmission systems at the same levels of external noise. Materials and Methods: The methods of numerical simulation of time-delay systems are used. For the self-oscillating systems with delay, the approach based on correlation receiving is used for communication systems. Results: It is shown that the principle of correlation receiver, which is applied in classical communication systems, can also be used in the case when chaotic signals generated by self-oscillating systems with complex behavior are taken as reference signals. Conclusion: The noise immunity of the communication system based on the methods of correlation receiving and dynamical chaos is close the noise immunity of a classical communication system.

Reference: 
  1. Andreev Yu. V., Gulyaev Yu. V., Kuzmin L. V., Dmitriev A. S., Efremova E. V., Kuzmin L. V., Lazarev V. A., Ryzhov A. I., Mokhseni T. I. Processy peredachi i obrabotki informatsii v sistemakh so slojnoi dinamikoi [Processes of information transmission and processing in systems with complex dynamics]. A. S. Dmitriev, E. V. Efremova, eds. Moscow, Technosfera Publ., 2019. 320 p. (in Russian).
  2. Koronovskii A. A., Moskalenko O. I., Hramov A. E. On the use of chaotic synchronization for secure communication. Physics – Uspekhi, 2009, vol. 52, pp. 1213–1238. DOI: https://doi.org/10.3367/UFNe.0179.200912c.1281
  3. Ren H.-P., Bai C., Liu J., Baptista M. S., Grebogi C. Experimental validation of wireless communication with chaos. Chaos, 2016, vol. 26, 083117. DOI: https://doi.org/10.1063/1.4960787
  4. Kul’minskii D. D., Ponomarenko V. I., Karavaev A. S., Prokhorov M. D. Noise-Resistant System of Concealed Information Transfer on a Chaotic Delayed Feedback Oscillator with Switchable Delay Time. Technical Physics, 2016, vol. 61, no. 5, pp. 639–647. DOI: https://doi.org/10.1134/S1063784216050121
  5. Yao J.-L., Li C., Ren H.-P., Grebogi C. Chaos-based wireless communication resisting multipath effects. Physical Review E, 2017, vol. 96, 032226. DOI: https://doi.org/10.1103/PhysRevE.96.032226
  6. Carroll T. L. Chaos for low probability of detection communications, Chaos, Solitons & Fractals, 2017, vol. 103, pp. 238–245. DOI: https://doi.org/10.1016/j.chaos.2017.06.011
  7. Kolumban G., Kennedy M. P. The role of synchronization in digital communication using chaos-part II: Chaotic modulation and chaotic synchronization. IEEE Trans. On Circuits and Systems – I: Fundamental Theory and Applications, 1998, vol. 45, no. 11, pp. 1129– 1140.
  8. Tao Y. A survey of chaotic secure communication systems. Int. J. Comput. Cogn., 2004, vol. 2, no. 2, pp. 81–130.
  9. Wang M., Wang X., Pei B. A new digital communication scheme based on chaotic modulation. Nonlinear Dynamics, 2012, vol. 67, pp. 1097–1104. DOI: https://doi.org/10.1007/s11071-011-0053-z
  10. Kolumban G., Kennedy M. P. The role of synchronization in digital communication using chaos-part III: Performance bounds for correlation receivers. IEEE Trans. On Circuits and Systems – I: Fundamental Theory and Applications, 2000, vol. 47, no. 12, pp. 1673–1683.
  11. Kapranov M. V., Tomashevskiy A. I. System of hidden communication using correlation receiver and synchronous chaotic response. Electromagnetic Waves and Electronic Systems, 2003, vol. 8, no. 3. pp. 35–48 (in Russian).
  12. Rohdea G. K., Nichols J. M., Bucholtz F. Chaotic signal detection and estimation based on attractor sets: Applications to secure communications. Chaos, 2008, vol. 18, 013114. DOI: https://doi.org/10.1063/1.2838853
  13. Corron N. J., Blakely J. N., Stahl M. T. A matched fi lter for chaos. Chaos, 2010, vol. 20, 023123. DOI: https://doi.org/10.1063/1.3432557
  14. Carroll T. L., Rachford F. J. Chaotic sequences for noisy environments. Chaos, 2016, vol. 26, 103104. DOI: https://doi.org/10.1063/1.4964348
  15. Prokhorov M. D., Ponomarenko V. I., Kulminskiy D. D., Koronovskii A. A., Moskalenko O. I., Hramov A. E. Resistant to noise chaotic communication scheme exploiting the regime of generalized synchronization. Nonlinear Dynamics, 2017, vol. 87, no. 3, pp. 2039–2050. DOI: https://doi.org/10.1007/s11071-016-3174-6
  16. Sklar B. Digital Communications: Fundamentals and Applications. 2nd ed. Los Angeles, University of California, 2001. 1104 p.
  17. Ikeda K., Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D, 1987, vol. 29, pp. 223–235. DOI: https://doi.org/10.1016/0167-2789(87)90058-3
  18. Ponomarenko V. I., Navrotskaya E. V., Kul’minskii D. D., Prokhorov M. D. Estimation of confidentiality of a communication system based on chaotic time-delay generator with switchable delay time. Informatsionnoupravliaiushchie sistemy [Information and Control Systems], 2019, no. 4, pp. 54–61 (in Russian). DOI: https://doi.org/10.31799/1684-8853-2019-4-54-61
  19. Hou T. T., Yi L. L., Yang X. L., Ke J. X., Hu Y., Yang Q., Zhou P., Hu W. S. Maximizing the security of chaotic optical communications. Optics Express, 2016, vol. 24, no. 20, 23439. DOI: https://doi.org/10.1364/OE.24.023439
  20. Chub R. O., Ponomarenko V. I., Prokhorov M. D. Method for information transmission using a predictive model in coupled time-delay systems. Izv. Saratov Univ. (N. S.), Ser. Physics, 2018, vol. 18, iss. 2, pp. 84–91 (in Russian). DOI: https://doi.org/10.18500/1817-3020-2018-18-2-84-91
  21. Dmitriev A. S., Panas A. I. Dinamicheskii haos: novye nositeki infornatsii dlya system sviazi [Dynamic chaos: new storage media for communication systems]. Moscow, Fizmatlit Publ., 2002. 252 p. (in Russian).