Izvestiya of Saratov University.

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

Cite this article as:

Salem S., Tuchin V. V. Trapping of Magnetic Nanoparticles in the Blood Stream under the Influence of a Magnetic Field. //Izvestiya of Saratov University. New series. Series: Physics. , 2020, vol. 20, iss. 1, pp. 72-79. DOI:

Published online: 

Trapping of Magnetic Nanoparticles in the Blood Stream under the Influence of a Magnetic Field

Salem Samia, Saratov State University
Tuchin Valeriy Viktorovich, Saratov State University

Magnetic nanoparticles, as controlled drug carriers, provide tremendous opportunities in treating a variety of tumors and brain diseases. In this theoretical study, we used magnetic nanoparticles, such as Superparamagnetic Iron Oxide Nanoparticles (Fe3O4) (SPION). Due to their biocompatibility and stability, these particles represent a unique nanoplatform with a great potential for the development of drug delivery systems. This allows them to be used in medicine for targeted drug delivery, in magnetic resonance imaging and magnetic hyperthermia. In the work, the trapping mechanisms of magnetic nanoparticles moving in a viscous fluid (blood) in a static magnetic field are numerically studied. The equations of motion for particles in the flow are governed by a combination of magnetic equations for the permanent magnet field and the Navier–Stokes equations for fluid (blood). These equations were solved numerically using the COMSOL Multiphysics® Modeling Software.

  1. Leslie-Pelecky D. L., Rieke R. D. Magnetic properties of nanostructured materials. Chem Mater, 1996, vol. 8, pp. 1770–1783.
  2. Múzquiz-Ramos E. M., Guerrero-Chávez V., Macías-Martínez B. I., López-Badillo C. M., Gar cía-Cerda L. A. Synt hesis and characterizatio n of maghemite nanopar ticles for hyperthermia applications. Ceramics International Part A, 2015, vol. 4, iss.1, pp. 397–402. DOI:
  3. Di Corato R., Aloisi A., Rella S., Greneche J.-M., Pugliese G., Pellegrino T., Malitesta C., Rinaldi R. Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell. ACS Applied Materials & Interfaces, 2018, vol. 10, no. 24, pp. 20271–20280. DOI:
  4. Habibi M. R., Ghassemi M. Numerical Study of Magnetic Nanoparticles Concentration in Biofl uid (Blood) under the Infl uence of High Gradient Magnetic Field. Journal of Magnetism and Magnetic Materials, 2011, vol. 323, pp. 32–38.
  5. Asmatulu R., Zalich M., Claus R., Riffl e J. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. Journal of Magnetism and Magnetic Materials, 2005, vol. 292, pp. 108–119.
  6. Arruebo M., Fernandez-Pacheco R., Ricardo Ibarra M., Santamaria J. Magnetic nanoparticles for drug delivery. Nanotoday, 2007, vol. 2, no. 3, pp. 22–32.
  7. Sadighian S., Rostamizadeh K., Hosseini-Monfared H., Hamidi M. Doxorubicin-conjugated core–shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids and Surfaces B. Biointerfaces, 2014, vol. 117, pp. 406–413.
  8. Voronin D., Sindeeva O., Kurochkin M., Mayorova O., Fedosov I., Semyachkina-Glushkovskaya O., Gorin D., Tuchin V., Sukhorukov G. In vitro and in vivo visualization and trapping of fl uorescent magnetic microcapsules in a blood stream. ACS Applied Materials & Interfaces, 2017, vol. 9, no. 8, pp. 6885–6893.
  9. Zinchenko E., Navolokin N., Shirokov A., Khlebtsov B., Dubrovsky A., Saranceva E., Abdurashitov A., Khorovodov A., Terskov A., Mamedova A., Klimova M., Agranovich I., Martinov D., Tuchin V., SemyachkinaGlushkovskaya O., Kurts J. Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: breakthrough strategies for nonpharmacologic therapy of Alzheimer’s disease. Biomed. Opt. Express, 2019, vol. 10, no. 8, pp. 4003–4017.
  10. Oldenburg A. L., Crecea V., Rinne S. A., Boppart S. A. Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Opt. Express, 2008, vol. 16, no. 15, pp. 11525–11539.
  11. Wijesinghe R. E., Park K., Kim D.-H., Jeon M., Kim J. In vivo imaging of melanoma-implanted magnetic nanoparticles using contrast-enhanced magneto-motive optical Doppler tomography. J. Biomed. Opt., 2016, vol. 21, no. 6, 064001. DOI:
  12. Kim J., Oh J., Choi B. Magnetomotive laser speckle imaging. J. Biomed. Opt., 2010, vol. 15, no. 1, 011110.
  13. Furlani E. P. Permanent Magnet and Electromechanical Device: Materials, Analysis and Applications. New York, Academic, 2001. 518 p.
  14. Bird R. B., Armstrong R. C., Hassager O. Dynamics of Polymeric Fluids. Fluid Mechanics. New York, Wiley, 1987, vol. 1, 672 p.
  15. Jones T. B. Electromechanics of Particles. New York, Cambridge University Press, 1995. 265 p.
  16. Kirby B. Micro- and nanoscale fl uid mechanics transport in microfl uidic devices. New York, Cambridge University Press, 2010. 505 p.
  17. Kim Y., Parada G. A., Liu S., Zhao X. Ferromagnetic soft continuum robots. Science Robotics, 2019, vol. 4, iss. 3, eaax7329. DOI:
  18. Zhang X., Luo M., Tan P., Zheng L., Shu C. Magnetic nanoparticle drug targeting to patient-specific atherosclerosis: effects of magnetic fi eld intensity and configuration. Applied Mathematics and Mechanics, 2020, vol. 41, iss. 2, pp.349–360. DOI:
  19. Nuzhina J. V., Sht il A. A., Pri lepskii A. Y., Vin ogradov V. V. Preclinical evaluation and clinical translation of magnetitebased nanomedicines. J. Drug Delivery Sci. Technol., 2019, vol. 54, 101282. DOI:
  20. Serov N., Prilepskii A., Sokolov A., Vinogradov V. Synthesis of plasmin-loaded Fe3O4@CaCO3 nanoparticles: Towards next-generation thrombolytic drugs. ChemNanoMat., 2019, vol. 5, pp. 1267–1271. DOI:
Full text:
(downloads: 50)