Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Yanina I. I., Kochubey V. I. Toxicity of Upconversion Nanoparticles. Overview. Izvestiya of Saratov University. Physics , 2020, vol. 20, iss. 4, pp. 268-277. DOI: 10.18500/1817-3020-2020-20-4-268-277

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2020
Full text:
(downloads: 492)
Language: 
Russian
UDC: 
53.06:615.4:615.9

Toxicity of Upconversion Nanoparticles. Overview

Autors: 
Yanina Irina Iur'evna, Saratov State University
Kochubey Vyacheslav Ivanovich, Saratov State University
Abstract: 

Background and Objectives: The object of the study was the toxicity of upconversion nanoparticles. The aim is to overview the literature on the toxicity of various types of upconversion nanoparticles and to search for their maximum permissible concentration when administered to laboratory animals in vivo. Materials and Methods: The approach used has been the analysis of recent publications on the topic. Results: Upconversion particles are promising for visualization of the structure of biological tissues and organs in fluorescent light, as well as for use in diagnostics of diseases and photoinduced therapy. Nanoparticles with additional shells or functionalized by surface coating with targeted or photoactive molecules, allowing the creation of particles with several modalities, are considered. The phototoxicity of such particles is considered separately. When using nanoparticles for therapy or diagnostics of the state of living objects, the issue of toxicity is urgent. The toxic effect of upconversion nanoparticles on the body depends on their concentration upon administration, as well as on the total amount of nanoparticles correlated with the body weight. Conclusion: From the considered concentration dependences, based on the results of histological and biochemical studies, it was shown that, as a rule, no noticeable toxicity was observed in such particles, and the maximum permissible concentration of particles can be considered 2 mg/ml.

Reference: 
  1. Li J., Chang X., Chen X., Gu Z., Zhao F., Chai Z., Zhao Y. Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol. Adv, 2014, vol. 32, no. 4, pp. 727‒743. DOI: https://doi.org/10.1016/j.biotechadv.2013.12.009
  2. Ahmad M. Z., Abdel-Wahab B. A., Alam A., Zafar S., Ahmad J., Ahmad F. J., Midoux P., Pichon C., Akhter S. Toxicity of Inorganic Nanoparticles Used in Targeted Drug Delivery and Other Biomedical Application: An Updated Account on Concern of Biomedical Nanotoxicology. J. Nanosci. Nanotechno, 2016, vol. 16, no. 8, pp. 7873‒7897. DOI: https://doi.org/10.1166/JNN.2016.13032
  3. Gnach A., Lipinski T., Bednarkiewicz A., Rybka J., Capobianco J.A. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev., 2015, vol. 44, no. 6, pp. 1561‒1584. DOI: https://doi.org/10.1039/c4cs00177j
  4. Tian B., Wang Q., Su Q., Feng W., Li F. In vivo biodistribution and toxicity assessment of triplet-triplet annihilation-based upconversion nanocapsules. Biomaterials, 2017, vol. 112, pp. 10‒19. DOI: https://doi.org/10.1016/j.biomaterials.2016.10.008
  5. Yang R., Cai L., Zheng A., Guan J. Inhalation of upconversion nanoparticles does transient damage to the mouse liver and lung. Chinese J. Tissue Eng. Res., 2016, vol. 20, no. 52, pp. 7865‒7871. DOI: https://doi.org/10.3969/j.issn.2095-4344.2016.52.016
  6. Abdul Jalil R., Zhang Y. Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. Biomaterials, 2008, vol. 29, pp. 4122–4128. DOI: http://dx.doi.org/10.1016/j.biomaterials.2008.07.012
  7. Wang F., Banerjee D., Liu Y., Chen X., Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst, 2010, vol. 135, no. 8, pp. 1839‒1854. DOI: https://doi.org/10.1039/C0AN00144A
  8. Zhou M., Ge X., Ke D.-M., Tang H., Zhang J.-Z., Calvaresi M., Gao B., Sun L., Su Q., Wang H. The Bioavailability, Biodistribution, and Toxic Effects of Silica-Coated Upconversion Nanoparticles in vivo. Front. Chem., 2019, vol. 7, pp. 218. DOI: https://doi.org/10.3389/fchem.2019.00218
  9. Rufaihah A. J., Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials, 2008, vol. 29, no. 30, pp. 4122e8. DOI: http://dx.doi.org/10.1016/j.biomaterials.2008.07.012
  10. Chen F., Bu W., Cai W., Shi J. Functionalized Upconversion Nanoparticles: Versatile Nanoplatforms for Translational Research. Curr. Mol. Med., 2013, vol. 13, no. 10, pp. 1613‒1632. DOI: https://doi.org/10.2174/1566524013666131111122133
  11. Yu Z., Xia Y., Xing J., Li Z., Zhen J., Jin Y., Tian Y., Liu C., Jiang Z., Li J., Wu A. Y1-receptor–ligandfunctionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity. Nanoscale, 2018, vol. 10, no. 36, pp. 17038‒17052. DOI: http://dx.doi.org/10.1039/c8nr02387e
  12. Sun L., Wei Z., Chen H., Liu J., Guo J., Cao M., Wen T., Shi L. Folic acid-functionalized up-conversion nanoparticles: toxicity studies in vivo and in vitro and targeted imaging applications. Nanoscale, 2014, vol. 6, pp. 8878‒8883. DOI: https://doi.org/10.1039/C4NR02312A
  13. Chatterjee D. K., Rufaihah A. J., Zhang Y. Upconversion fl uorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 2008, vol. 29, pp. 937–943. DOI: https://doi.org/10.1016/j.biomaterials.2007.10.051
  14. Yu J., Yin W., Peng T., Chang Y., Zu Y., Li J., He X., Ma X., Gu Z., Zhao Y. Biodistribution, Excretion, and Toxicity of Polyethyleneimine Modifi ed NaYF4:Yb,Er Upconversion Nanoparticles in Mice via Different Administration Routes. Nanoscale, 2017, vol. 9, no. 13, pp. 4497‒4507. DOI: http://dx.doi.org/10.1039/c7nr00078b
  15. Long N., Wong W.-T. The Chemistry of Molecular Imaging. John Wiley & Sons, 2014. 408 p. Available at: https://avidreaders.ru/book/the-chemistry-of-molecularimaging.html
  16. Jin J. F., Gu Y. J., Man C. W. Y., Cheng J. P., Xu Z. H., Zhang Y., Wang H. S., Lee V. H. Y., Cheng S. H., Wong W. T. Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano, 2011, vol. 5, no. 10, pp. 7838‒7847. DOI: http://dx.doi.org/10.1021/nn201896m
  17. Xiong L., Yang T., Yang Y., Xu C., Li F. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials, 2010, vol. 31, pp. 7078–7085. DOI: https://doi.org/10.1016/j.biomaterials.2010.05.065
  18. Sun X., Shi J., Fu X., Yang Y., Zhang H. Long-term in vivo biodistribution and toxicity study of functionalized near-infrared persistent luminescence nanoparticles. Sci. Rep., 2018, vol. 8, pp. 10595. DOI: http://dx.doi.org/10.1038/s41598-018-29019-z
  19. Cheng L., Yang K., Shao M., Lu X., Liu Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine (London), 2011, vol. 6, no. 8, pp. 1327‒1340. DOI: http://dx.doi.org/10.2217/nnm.11.56
  20. Zhou J., Sun Y., Du X., Xiong L., Hu H., Li F. Dualmodality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials, 2010, vol. 31, pp. 3287–3295. DOI: http://dx.doi.org/10.1016/j.biomaterials.2010.01.040
  21. Zhou J., Yu M., Sun Y., Zhang X., Zhu X., Wu Z., Wu D., Li F. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials, 2011, vol. 32, pp. 1148–1156. DOI: https://doi.org/10.1016/j.biomaterials.2010.09.071
  22. Xia A., Chen M., Gao Y., Wu D. M., Feng W., Li F. Y. Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-toNIR upconversion luminescence, X-ray computed tomography and magnetic resonance. Biomaterials, 2012, vol. 33, no. 21, pp. 5394‒5405. DOI: https://doi.org/10.1016/j.biomaterials.2012.04.025
  23. Liu Z., Dong K., Liu J. H., Han X. L., Ren J. S., Qu X. G. Anti-biofouling polymer-decorated lutetium-based nanoparticulate contrast agents for in vivo high-resolution trimodal imaging. Small, 2014, vol. 10, no. 12, pp. 2429–2438. DOI: https://doi.org/10.1002/smll.201303909.
  24. Peng J., Samanta A., Zeng X., Han S., Wang L., Su D., Loong D. T., Kang N. Y., Park S. J., All A. H., Jiang W., Yuan L., Liu X., Chang Y. T. Real-Time In Vivo Hepatotoxicity Monitoring through Chromophore-Conjugated Photon-Upconverting Nanoprobes. Angew. Chem. Int. Ed. Eng., 2017, vol. 56, no. 15, pp. 4165‒4169. DOI: https://doi.org/10.1002/anie.201612020
  25. Peng J., Sun Y., Liu Q., Yang Y., Zhou J., Feng W., Zhang X., Li F. Upconversion nanoparticles dramatically promote plant growth without toxicity. Nano Res., 2012, vol. 5, pp. 770–782. DOI: https://doi.org/10.1007/s12274-012-0261-y
  26. Lucky S. S., Idris N. M., Huang K., Kim J., Li Z., Thong P. S. P., Xu R., Soo K. C., Zhang Y. In vivo Biocompatibility, Biodistribution and Therapeutic Efficiency of Titania Coated Upconversion Nanoparticles for Photodynamic Therapy of Solid Oral Cancers. Theranostics, 2016, vol. 6, no. 11, pp. 1844–1865. DOI: http://dx.doi.org/10.7150/thno.15088
  27. Wang Z.-L., Hao J., Chan H. L. W., Law G.-L., Wong W.-T., Wong K.-L., Murphy M. B., Su T., Zhang Z. H., Zeng S. Q. Simultaneous synthesis and functionalization of watersoluble up-conversion nanoparticles for in-vitro cell and nude mouse imaging. Nanoscale, 2011, vol. 3, no. 5, pp. 2175‒2181. DOI: https://doi.org/10.1039/c1nr10090d
  28. Yang D., Dai Y., Liu J., Zhou Y., Chen Y., Li C., Ma P., Lin J. Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. Biomaterials, 2014, vol. 35, no. 6, pp. 2011‒2023. DOI: http://dx.doi.org/10.1016/j.biomaterials.2013.11.018
  29. Peng J., Sun Y., Zhao L., Wu Y., Feng W., Gao Y., Li F. Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb,Tm,153Sm nanoparticles for blood pool imaging in vivo. Biomaterials, 2013, vol. 34, no. 37, pp. 9535‒9544. DOI: http://dx.doi.org/10.1016/j.biomaterials.2013.07.098
  30. Guryev E. L., Volodina N. O., Shilyagina N. Y., Gudkov S. V., Balalaeva I. V., Volovetskiy A. B., Lyubeshkin A. V., Sen’ A. V., Ermilov S. A., Vodeneev V. A., Petrov R. V., Zvyagin A. V., Alferov Z. I., Deyev S. M. Radioactive (90Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer. Proc. Natl. Acad. Sci., 2018, vol. 115, no. 39, pp. 9690‒9695. DOI: https://doi.org/10.1073/pnas.1809258115
  31. Asadi M., Ghahari M., Hassanzadeh-Tabrizi S. A., Masoud Arabi A., Nasiri R. Studying the toxicity effects of coated and uncoated NaLuF4: Yb3+, Tm3+ upconversion nanoparticles on blood factors and histopathology for Balb/C mice’s tissue. Mater. Res. Express, 2020, vol. 6, pp. 125421. DOI: https://doi.org/10.1088/2053-1591/ab6199
  32. Mironova K. E., Khochenkov D. A., Generalova A. N., Rocheva V. V., Sholina N. V., Nechaev A. V., Semchishen V. A., Deyev S. M., Zvyagin A. V., Khaydukov E. V. Ultraviolet phototoxicity of upconversion nanoparticles illuminated with near-infrared light. Nanoscale, 2017, vol. 9, no. 39, pp. 14921‒14928. DOI: https://doi.org/10.1039/c7nr04092j
  33. Maldiney T., Richard C., Seguin J., Wattier N., Bessodes M., Scherman D. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano, 2011, vol. 5, pp. 854–862. DOI: https://doi.org/10.1021/nn101937h
  34. Khaydukov E. V., Mironova K. E., Semchishen V. A., Generalova A. N., Nechaev A. V., Khochenkov D. A., Stepanova E. V., Lebedev O. I., Zvyagin A. V., Deyev S. M., Panchenko V. Y. Ribofl avin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep., 2016, vol. 6, pp. 35103. DOI: https://doi.org/10.1038/srep35103
  35. Xu J., Xu L., Wang C., Yang R., Zhuang Q., Han X., Dong Z., Zhu W., Peng R., Liu Z. Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS Nano, 2017, vol. 11, no. 5, pp. 4463‒4474. DOI: https://doi.org/10.1021/acsnano.7b00715
  36. Maji S. K., Sreejith S., Joseph J., Lin M., He T., Tong Y., Sun H., Yu S. W., Zhao Y. Upconversion Nanoparticles as a Contrast Agent for Photoacoustic Imaging in Live Mice. Adv. Mater., 2014, vol. 26, no. 32, pp. 5633‒5638. DOI: http://dx.doi.org/10.1002/adma.201400831
  37. Fan W., Shen B., Bu W., Zheng X., He Q., Cui Z., Ni D., Zhao K., Zhang S., Shi J. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 2015, vol. 69, pp. 89‒98. DOI: https://doi.org/10.1016/j.biomaterials.2015.08.017
  38. Chien Y.-H., Chou Y.-L., Wang S.-W., Hun S.-T., Liau M.-C., Chao Y.-J., Su C.-H., Yeh C.-S. Near-Infrared Light Photocontrolled Targeting, Bioimaging, and Chemotherapy with Caged Upconversion Nanoparticles in Vitro and in Vivo. ACS Nano, 2013, vol. 7, no. 10, pp. 8516‒8528. DOI: https://doi.org/10.1021/nn402399m