Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Nikishin E. L., Pavlova M. V., Suchilin A. V. The Method of Visualization of Spatially Inhomogeneous Acousic Fields from Micro-Objects on the Basis of Acousto-Optic Interaction in the System with Double Fourier Transform. Izvestiya of Sarat. Univ. Physics. , 2019, vol. 19, iss. 3, pp. 178-187. DOI: 10.18500/1817-3020-2019-19-3-178-187

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 64)

The Method of Visualization of Spatially Inhomogeneous Acousic Fields from Micro-Objects on the Basis of Acousto-Optic Interaction in the System with Double Fourier Transform

Nikishin Evgeny Leonardovich, Saratov State Technical University named after Yuri Gagarin
Pavlova Maria Valentinovna, Saratov State Technical University named after Yuri Gagarin
Suchilin Aleksey Vladimirovich, Saratov State Technical University named after Yuri Gagarin

Background and Objectives: The method of acousto-optic visualization based on a double Fourier transform is presented. In a hybrid acousto-optic processor, the double Fourier transform is realized in the process of converting an acoustic signal from an object by an acoustic lens formed by the conjugate spherical surfaces of two crystals, and the subsequent processing of light diffracted in a photoelastic medium by an optical collecting lens. The possibility of using of this method for displaying high-resolution acoustic fields from micro-objects with characteristic dimensions of tens of micrometers is considered. The dependence of the resolution of the visualization device on the parameters of the acoustic and optical systems, as well as the image registration system, is studied. Materials and Methods: An optical system for introducing a laser beam is presented, which simultaneously improves the resolution of the device and ensures the observation of acoustic fields in a wide angular spectrum. Formulas for theoretical estimation of the resolution of components of a acousto-optic processor are presented. It is shown that to obtain the same resolution of the acousto-optic processor in orthogonal directions of an acoustic object, it is necessary to implement an optical system with an angular resolution in the planes corresponding to these directions, equal to the ratio of the angular resolution of the acoustic lens to the anamorphization coefficient. Results: The experimental verification of the acousto-optic processor functionality is carried out. Theoretical and experimental estimations of the resolution of the device as a whole are given. Conclusion: The advantage of using the visualization method based on acoustooptic interaction in a double Fourier transform system for observing micro-objects with high resolution is proved.


1. Soldatov A. I., Seleznev A. I. Acoustic Field Visualization in cylindrical wavequide. Izvestiia IuFU. Tekhnicheskie nauki [Journal of SFU. Technical science], 2009, no. 10, pp. 173–178 (in Russian).

2. Blagov A. E., Darinskii A. N., Targonskii A. V., Pisarevskii Yu. V., Prosekov P. A., Kovalchuk M. V. X-ray acoustic resonators for controlling the spatial characteristics of X-radiation. Acoustical Physics, 2013, vol. 59, no. 5, pp. 506–512. DOI: https://doi.org/10.1134/S1063771013050035

3. Prokhorov V. E., Chashechkin Y. D. Visualization and acoustic sounding of the fi ne structure of a stratifi ed fl ow behind a vertical plate. Fluid Dynamics, 2013, vol. 48, no. 6, pp. 722–733.

4. Zimnyakov D. A., Nikishin E. L., Pavlova M. V., Suchilin A. V. Acousto-optical imaging of standing electromagnetic waves in multielement piezoelectric transducers of acoustoelectric devices. Instruments and Experimental Techniques, 2014, vol. 57, no. 6, pp. 702–705. DOI: https://doi.org/10.1134/S0020441214060128

5. Profunser D. M., Muramoto E., Matsuda O., Wright O. B., Lang U. Dynamic visualization of surface acoustic waves on a two-dimensional phononic crystal. Phys. Rev. B, 2009, vol. 80, p. 014301. DOI: https://doi.org/10.1103/PhysRevB.80.014301

6. Alekseev S. G., Gulyaev Yu. V., Kotelyanskii I. M., Mansfel’d G. D. Some trends in microwave acoustoelectronics development. Physics-Uspekhi, 2005, vol. 48, no. 8, pp. 855–859. DOI: https://doi.org/10.1070/PU2005v048n08ABEH002841

7. Corso C. D., Dickherber A., Hunt W. D. Lateral fi eld excitation of thickness shear mode waves in a thin fi lm ZnO solidly mounted resonator. J. Appl. Phys., 2007, vol. 101, pp. 054514. DOI: https://doi.org/10.1063/1.2562040

8. Yoshino Y. Piezoelectric thin fi lms and their applications for electronics. J. Appl. Phys., 2009, vol. 105, iss. 6, pp. 061623. DOI: https://doi.org/10.1063/1.3072691

9. Qin L., Chen Q., Cheng H., Chen Q., Li J.-F., Wang Q.-M. Viscosity sensor using ZnO and AlN thin fi lm bulk acoustic resonators with tilted polar c-axis orientations. J. Appl. Phys., 2011, vol. 110, iss. 9, pp. 094511. DOI: https://doi.org/10.1063/1.3657781

10. Prasad M., Sahula V., Vinod Kumar K. V. ZnO etching and microtunnel fabrication for high-reliability MEMS acoustic sensor. IEEE Trans. on Device Mater. Reliability, 2014, vol. 14, iss. 1, pp. 545–554. DOI: https://doi.org/10.1109/TDMR.2013.2271245

11. Hickernell F. S. Zinc-Oxide Thin-Film Surface-Wave Transducers. Proceedings of the IEEE, 1976, vol. 64, iss. 5, pp. 631–635. DOI: https://doi.org/10.1109/PROC.1976.10187

12. Nalamwar A. L., Wagers R. S., Epstein M. Effi cient bulk-wave excitation by interdigital transducers in layered media. J. Appl. Phys., 1977, vol. 48, iss. 6, pp. 2175–2178. DOI: https://doi.org/10.1063/1.324017

13. Jing B., Chigan P., Ge Z., Wu L., Wang S., Wan M. Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography. Journal of the Acoustical Society of America, 2017, vol. 141, iss. 5, pp. 3312–3322. DOI: https://doi.org/10.1121/1.4983472

14. Pudovikov S., Bulavinov A., Pinchuk R. Innovative Ultrasonic Testing (UT) of Nuclear Components by Sampling Phased Array with 3D Visualization of Inspection Results. DGZfP Proceedings 8th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components 2010 (Berlin, Germany, 29 September 2010 – 1 October 2010). Berlin, 2011. Paper Th.2.C.6, 10 p.

15. Ohno M., Takagi K. Schlieren visualization of acoustic phase conjugate waves generated by nonlinear electroacoustic interaction in LiNbO3. Appl. Phys. Lett., 1992, vol. 60, iss. 1, pp. 29–31. DOI: https://doi.org/10.1063/1.107356

16. Hargather M. J., Settles G. S., Madalis M. J Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility. Shock Waves, 2010, vol. 20, iss. 1, February, pp. 9–17. DOI: https://doi.org/10.1007/s00193-009-0226-6

17. Goh C. L., Rahim R. A., Rahiman H. F., Zhen Cong T., Wahad Y. A. Simulation and experimental study of the sensor emitting frequency for ultrasonic tomography system in a conducting pipe. Flow Measurement and Instrumentation, 2017, vol. 54, pp. 158–171. DOI: https://doi.org/10.1016/j.flowmeasinst.2017.01.003

18. Sukhanov D. Y., Yerzakova N. N. Reconstruction of sound sources using multiposition wideband remote measurements of the sound field. Izvestiia vysshikh uchebnykh zavedenii. Fizika [News from Universities. Physics], 2013, vol. 56, no. 8/2, pp. 57–61 (in Russian).

19. Korpel A. Vizualization of the cross-section of a sound beam by Bragg diffraction of light. Appl. Phys. Lett., 1966, vol. 9, pp. 425–427.

20. Ahmed M., Wade G. Breggovskaia akustoskopiia [Bragg Acostoscopy]. Trudy instituta inzhenerov po elektrotekhnike i radioelektronike [Proc. of the IEEE], 1979, vol. 67, iss. 4, pp. 170–190 (in Russian).

21. Korpel A. Acousto-optics. New York, Marcel Dekker Inc., 1997. 396 p.

22. Zyuryukin Yu. A., Kolotyrin A. A., Knyazev A. A. Principles of Bragg Acousto-Optic Visualization with Double Fourier Transform. In: Problemy opticheskoi fi ziki: materialy mezhdunar. Molodezhnoi nauch. shkoly po optike, lazernoi fi zike i biofi zike [Problems of optical physics: materials of the Intern. youth scientifi c schools on optics, laser physics and biophysics]. Saratov, Izd-vo Sarat. un-ta, 2000, pp. 163–164 (in Russian).

23. Kolotyrin A. A., Zimnyakov D. A., Nikishin E. L., Zdrazhevskii R. A., Zavarin S. V. Hybrid Acousto- Optic Fourier Processor for Imaging Spatially Inhomogeneous Acoustic Fields. Technical Physics Letters, 2011, vol. 37, iss. 11, pp. 992–995. DOI: https://doi.org/10.1134/S106378501111006X

24. Zimnyakov D. A., Kolotyrin A. A., Nikishin E. L. Ustroistvo dlia vizualizatsii prostranstvenno-neodnorodnykh akusticheskikh polei ot mikroob”ektov [Device for visualization of space-inhomogeneous acoustic fi elds from micro-objects]. Patent RF, no. 2470268, 2012 (in Russian).

25. Kolotyrin A. A., Nikishin E. L., Pavlova M. V., Suchilin A. V. The analysis obtaining of optical image acoustic object by hybrid acousto-optic fourier processor. International conference on actual problems of electron devices engineering APEDE-2014. Saratov, Izd-vo SGTU, vol. 1, pp. 290–294 (in Russian). DOI: https://doi.org/10.1109/APEDE.2014.6958763

26. Nikishin E. L., Pavlova M. V., Suchilin A. V. Theoretical and experimental evaluation anamorphic factor in the hybrid acousto-optical imaging device acoustic fi elds. International conference on actual problems of electron devices engineering, APEDE, 2017, vol. 1, pp. 7878923. DOI: https://doi.org/10.1109/APEDE.2016.7878923

27. Balakshii V. I., Parygin V. N., Chirkov L. E. Fizicheskiye osnovy akustooptiki [Physical Basics of Acousto-Optics]. Moscow, Radio i Sviaz’, 1985. 280 p. (in Russian).

28. Zimnyakov D. A., Nikishin E. L., Pavlova M. V., Suchilin A. V. Ustroistvo dlia vizualizatsii akusticheskikh polei ot mikroob”ektov [Device for visualization of acoustic fi elds from micro-objects]. Patent RF, no. 2658585, 2018 (in Russian).