Cite this article as:

Babkov L. M., Davydova N. A., Ivlieva-Peretokina I. V. The Influence of Hydrogen Bond on the Structure and IR Spectrum of Triphenyl Phosphite. Izvestiya of Saratov University. New series. Series Physics, 2019, vol. 19, iss. 2, pp. 132-139. DOI: https://doi.org/10.18500/1817-3020-2019-19-2-132-139


UDC: 
539.194:539.196.3
Language: 
Russian

The Influence of Hydrogen Bond on the Structure and IR Spectrum of Triphenyl Phosphite

Abstract

Background and Objectives: The IR spectra of triphenyl phosphite (TPP) have been measured at temperatures of 12 and 320 K in five phase states: crystalline (monoclinic and hexagonal phases), “glacial”, amorphous and liquid. It is necessary to clarify the effect of hydrogen bonding on the structure and IR spectrum of TPP. Materials and Methods: The IR spectra were measured on the IFS-88 spectrophotometer using the OPUS software. The spectral resolution was 2 cm^(-1). The energies, geometrical structures, mechanical and electro-optical parameters of the TPP H-complex represented by dimer were calculated using the density functional theory method B3LYP/6-31G(d) implemented in the Gaussian 03 program package. Results: The studies indicate the presence of the weak H-bonding С12-Н15 …..О41 between the PO3 group and benzene ring. The energy of the Н-bond is 1.3 kcal/mol. The length of the hydrogen bridge is 2.963 Å. The dipole moment is 4.5 D. The H-bond only affects the vicinity of the hydrogen bridge. Influence of the H-bond is not significant for the frequencies, but the intensities change more significantly. The presence of the H-bond is confirmed by the changes at 715–740, 850–890, 1180–1220, 3020–3080 cm^(-1) regions. Conclusions: Investigations of the measured IR spectra and the results of computer simulation confirmed the presence of weak H-bond in the TPP samples. With its help, conformers are combined into dimers and trimers. The H-bond affects the structure of the conformer fragment P(OС)3 and its spectral characteristics (bands at 715–740, 850–890, 1180–1220 cm^(-1) regions changes) and changes the shape of the band in the region of stretching vibrations of C – H bonds (3020–3080 cm^(-1)) bringing it closer to the experimental ones. The TPP samples at liquid, amorphic, “glassial” states and crystal modifications are a mixture of different conformers and H-complexes with weak H-bond (dimers and trimers). The conformers and H-complexes determine the shape of IR spectra in different phase states.

References

1. Babkov L. M., Davydova N. A., Ivlieva I. V. IR spectra of triphenyl phosphite and their interpretation by molecular modeling. Izv. Saratov. Univ. (N. S.), Ser. Physiсs, 2017, vol. 17, iss. 1, pp. 11–19 (in Russian). DOI: https://doi.org/10.18500/1817-3020-2017-17-1-11-19

2. Mei Q., Ghalsasi P., Benmore C. J., Yarger J. L. The local structure of triphenyl phosphite studied using spallation neutron and high-energi X-ray diffraction. J. Phys. Chem. B, 2004, vol. 108, pp. 20076–20082.

3. Hernandez O.J., Boucekkine A., Hedoux A. Density functional theory study of triphenyl phosphite: molecular fl exibility and weak intermolecular hydrogen bonding. J. Phys. Chem. A, 2007, vol. 111, pp. 6952–6958.

4. Wiedersich J., Kudlic K., Gottwald J., Benini G., Roggatz I., Rosser E. On polyamorphism of triphenyl phosphite. J. Phys. Chem. B, 1997, vol. 101, no. 30, pp. 5800–5803.

5. Senker J., Sehnert J., Correll S. Microscopic description of the polyamorphic phases of triphenyl phosphite by means of multidimensional solid-state NMR spectroscopy. J. Am. Chem. Soc., 2005, vol. 127, no. 1. pp. 337–349.

6. Hedoux A., Guinet Y., Descamps M., Hernandez O., Derollez P., Dianoux A. J., Foulon M., Lefebvre J. A description of the frustration responsible for a polyamorphism situation in triphenyl phosphite. J. Non-Cryst. Solids, 2002, vol. 307, pp. 637–643.

7. Hedoux A., Denicourt T., Guinet Y., Carpentier L., Descamps M. Conversion of the glacial state into the crystal in triphenyl phosphite. Solid State Communications, 2002, vol. 122, no. 7–8, pp. 373–378.

8. Hernandez O., Hédoux A., Lefebvre J., Guinet Y., Descamps M., Papoular R., Masson O. Ab initio structure determination of tri phenyl phosphite by powder synchrotron X-ray diffraction. J. Appl. Cryst., 2002, vol. 35, pp. 212–219.

9. Kivelson D., Tarjus G. Apparent polyamorphism and frustration. J. Non-Cryst. Solids, 2002, vol. 307–310, pp. 630–636.

10. Senker J., Rossler E. Triphenyl phosphite: a candidate for liquid polyamorphism. Chem. Geol., 2001, vol. 174, no. 1–3, pp. 143–156.

11. Senker J., Rossler E. Determination of the local disorder in the polyamorphic phases of triphenyl phosphite. J. Phys. Chem. B, 2002, vol. 106, no. 31, pp. 7592–7595.

12. Golovanov D. G., Lyssenko K. A., Antipin M. Yu., Vygodskii Y. S., Lozinskaya E. I., Shaplov A. S. Longawaited polymorphic modifi cation of triphenyl phosphite. CrystEngComm., 2005, vol. 7, pp. 465–468.

13. Johari G. R., Ferrari C. Calorimetric and dielectric investigations of the phase transformations and glass transition of triphenyl phosphite. J. Phys. Chem. B, 1997, vol. 101, no. 49, pp. 10191–10197.

14. Dvinskich S., Benini G., Senker J., Vogel M., Wiedersich J., Kudlic K., Rosser E. J. Molecular motion in the two amorphous phases of triphenyl phosphite. Phys. Chem. B, 1999, vol. 103, no. 10, pp. 1727–1737.

15. Alba-Simionesco Ch., Tarjus G. Experimental evidence of mesoscopic order in the apparently amorphous glacial phase of the fragile glass former triphenyl phosphite. Europhysics Letters, 2000, vol. 52, no. 3, pp. 297–303.

16. Tarjus G., Alba-Simionesco A., Grousson M., Viot P., Kivelson D. Locally preferred structure and frustration in glass-forming liquids: a clue to polyamorphism? J. Phys. Cond. Matter., 2003, vol. 15, no. 11, pp. S1077–S1084.

17. Mizukami M., Kobashi K., Hanaya M., Oguni M. J. Presence of two freezing-in processes concerning α-glass transition in the new liquid phase of triphenyl phosphite and its consistency with “cluster structure” and “intracluster rearrangement for α process” models. Phys. Chem. B, 1999, vol. 103, no. 20, pp. 4078–4088.

18. Hedoux A., Guinet Y., Derollez P., Hernandez O., Paccou L., Descamps M. Micro-structural investigations in the glacial state of triphenyl phosphite. J. Non-Cryst. Solids, 2006, vol. 352, no. 42–59, pp. 4994–5000.

19. Hedoux A., Hernandez O., Lefebvre J., Guinet Y., Descamps M. Mesoscopic description of the glacial state in triphenyl phosphite from x-ray diffraction experiment. Phys. Rev. B, 1999, vol. 60, pp. 9390–9395.

20. Hedoux A., Guinet Y., Descamps M., Benabou A. Raman scattering investigation of the glaciation process in triphenyl phosphite. J. Phys. Chem. B, 2000, vol. 10, pp. 11774–11780.

21. Hedoux A., Guinet Y., Descamps M. Size dependence of the raman spectra in an amorphous-nanocrystalline mixwd phase: the glacial state of triphenyl phosphite. J. Raman Spectrosc., 2001, vol. 32, pp. 677–688.

22. Hedoux A., Guinet Y., Foulon M., Descamps M. Evidence for transient kinetics of nucleation as responsible for the isothermal transformation of supercooled liquid into the glacial state of triphenyl phosphite. J. Chem. Phys.,2002, vol. 116, pp. 9374–9382.

23. Derollez P., Hedoux A., Guinet Y., Lefebvre J., Descamps M., Hernandez O. Micro(nano)structure of the glacial state in triphenyl phosphite (TPP). Z. Kristallogr. Suppl., 2006, vol. 23, pp. 557–562.

24. Senker J., Rossler E. Triphenyl phosphite: a candidate for liquid polyamorphism. Chem. Geol., 2001, vol. 174, pp. 143–156.

25. Mosses J., Syme C.D., Wynne K.W. Order parameter of the liquid-liquid transition in a molecular liquid. J. Phys. Chem. Lett., 2015, vol. 6, pp. 38–43.

26. Babkov L. M., Baran J., Davydova N. A., Ivlieva I. V., Ponezha E. A., Reznichenko V. Ya. Infrared spectra of triphenyl phosphite and their interpretation on the basis of quantum chemistry calculation. Ukr. J. Phys., 2016, vol. 61, no. 6, pp. 471–476.

27. Kohn W. Nobel Lecture: Electronic structure of matter – wave functions and density functionals. Reviews of Modern Physics, 1999, vol. 71, no. 5, pp. 1253–1266.

28. Pople J. Nobel Lecture: Quantum chemical models. Reviews of Modern Physics, 1999, vol. 71, no. 5, pp. 1267–1274.

29. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven Jr. T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong W., Gonzalez C., Pople J. A. Gaussian 03, Revision B.03. Gaussian Inc., Pittsburgh PA, 2003. 302 p.

30. Yoshida H., Ehara A., Matsuura H. Density functional vibrational analysis using wavenumber-linear scale factors. Chem. Phys. Lett., 2000, vol. 325, no. 4, pp. 477–483.

31. Yoshida H., Takeda K., Okamura J., Ehara A., Matsuura H. A new approach to vibrational analysis of large molecules by density functional theory: wavenumber-linear scaling method. J. Phys.Chem. A, 2002, vol. 106, no. 4, pp. 3580–3586.

32. Berezin K. V., Nechaev V. V., Krivochidgina T. V. Application of a method of linear scaling of frequencies in calculations of the normal vibrations of polyatomic molecules. Optika i Spektroskopiya [Optics and Spectroscopy], 2003, vol. 94, no. 3, pp. 357–360 (in Russian).

Full text (in Russian):