Izvestiya of Saratov University.

Physics

ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)


For citation:

Malyar I. V., Stetsyura S. V. The Effect of Illumination on Conformation of Polyelectrolyte Molecules During Adsorption onto Semiconductor Substrate. Izvestiya of Saratov University. Physics , 2014, vol. 14, iss. 2, pp. 49-52. DOI: 10.18500/1817-3020-2014-14-2-49-52

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 170)
Language: 
Russian
Heading: 
UDC: 
620.3

The Effect of Illumination on Conformation of Polyelectrolyte Molecules During Adsorption onto Semiconductor Substrate

Autors: 
Malyar Ivan Vladislavovich, Saratov State University
Stetsyura Svetlana Viktorovna, Saratov State University
Abstract: 

The analytical model describing the influence of illumination of semiconductor substrate during polyelectrolyte adsorption onto it, which results in different deposited organic layer thickness, was suggested. The both changes of non-equilibrium charge carriers concentrations and surface charge density under illumination of semiconductor were considered, which allows one to explain changing of adsorbed layer thickness due to molecule conformation changes because of their electrostatic interaction with photosensitive substrate. Based on experimental results of surface potential changes under illumination the analytical dependences in good quantitative and qualitative agreement with empirical data were obtained.

Reference: 
  1. The new frontiers of organic and composite nanotechnology / ed. V. Erokhin, M. K. Ram, O. Yavuz. Amsterdam, Netherlands : Elsevier Science, 2008. 504 p.
  2. Tripathy S. K., Kumar J., Nalwa N. S. Handbook of Polyelectrolytes and Their Applications Vol. 1. Stevenson Ranch : American Scientifi c Publishers, 2002.
  3. Lutkenhaus J. L., Hammond P. T. Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors // Soft Matter. 2007. Vol. 3. P. 804–816.
  4. Uslu F., Ingebrandt S., Mayera D., Böcker-Meffert S., Odenthal M., Offenhäusser A. Labelfree fully electronic nucleic acid detection system based on a fi eld-effect transistor device // Biosensors and Bioelectronics. 2004. Vol. 19. P. 1723–1731.
  5. Dobrynin A. V., Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces // Prog. Polym. Sci. 2005. Vol. 30. P. 1049–1118.
  6. Schroder D.K. Surface voltage and surface photovoltage: history, theory and applications // Meas. Sci. Technol. 2001. Vol. 12. P. R16–R31.
  7. Маляр И. В., Santer S., Стецюра С. В. Влияние освещения на параметры полимерного покрытия, осаждаемого из раствора на полупроводниковую подложку // ПЖТФ. 2013. Т. 39, вып. 14. С. 69–76.
  8. Dobrynin A. V., Deshkovski A., Rubinstein M. Adsorption of polyelectrolytes at an oppositely charged surface // Phys. Rev. Lett. 2000. Vol. 84, № 14. P. 3101–3104
  9. Green M. A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coeffi cients // Sol. Energ. Mat. Sol. Cells. 2008. Vol. 92. P. 1305–1310.
  10. Богатыренко В. В. Метод измерения скорости поверхностной рекомбинации в кремниевых пластинах по их тепловому излучению // ФТП. 2010. Т. 44, вып. 3. С. 409–412.
  11. Стецюра С. В., Маляр И. В. Применение метода зонда Кельвина для исследования влияния полиэлектролитного покрытия и освещения на поверхностный потенциал кремния // Методологические аспекты сканирующей зондовой микроскопии : сб. докл. X Междунар. конф. Минск : Беларус. навука, 2012. С. 59–64.
  12. Ziebarth J. D., Wang Y. Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations // Biomacromolecules. 2010. Vol. 11(1). P. 29–38
  13. Sun C., Tang T., Uluda H., Cuervo J. E. Molecular Dynamics Simulations of DNA/PEI Complexes: Effect of PEI Branching and Protonation State // Biophysical Journal. 2011. Vol. 100. P. 2754–2763.
  14. Pehlivan I. B., Marsal R., Georén P., Granqvist C. G., Niklasson G. A. Ionic relaxation in polyethyleneiminelithium bis(trifl uoromethylsulfonyl) imide polymer electrolytes // J. Appl. Phys. 2010. Vol. 108. P. 074102-1– 074102-6.