For citation:
Skripal A. V., Ponomarev D. V., Komarov A. A., Sharonov V. E. Tamm resonances control in one-dimensional microwave photonic crystal for measuring parameters of heavily doped semiconductor layers. Izvestiya of Saratov University. Physics , 2022, vol. 22, iss. 2, pp. 123-130. DOI: 10.18500/1817-3020-2022-22-2-123-130, EDN: ERLGLP
Tamm resonances control in one-dimensional microwave photonic crystal for measuring parameters of heavily doped semiconductor layers
The possibility has been explored to control the photonic Tamm resonances (TRs) in the one-dimensional microwave photonic crystal (MPC) with the dielectric filling by changing the thickness of the MPC’s outer layer adjacent to the heavily doped layer of the semiconductor GaAs structure. The controlled photonic TRs have been used to measure the conductivity of the heavily doped semiconductor layer. It has been shown that depending on the conductivity of the layer the specific tuning of the TR frequency is necessary in order to achieve a high sensitivity of the TR to the change of the conductivity. The possibility of observing the plasma resonance in the infrared range has additionally allowed to determine the concentration and mobility of free charge carriers in the heavily doped layer of the GaAs structure.
- Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V. One-dimensional Microwave Photonic Crystals : New Applications. CRC Press, Taylor Francis Group, 2019. 154 p. https://doi.org/10.1201/9780429276231
- Belyaev B. A., Khodenkov S. A., Shabanov V. F. Investigation of frequency-selective devices based on a microstrip 2D photonic crystal. Doklady Physics [Physics Reports], 2016, vol. 61, no. 4, pp. 155–159. https://doi.org/10.1134/S1028335816040017
- Fernandes H. C. C., Medeiros J. L. G., Junior I. M. A., Brito D. B. Photonic crystal at millimeter waves applications. PIERS Online, 2007, vol. 3, no. 5, pp. 689–694. https://doi.org/10.2529/PIERS060901105337
- El-Shaarawy H. B., Coccetti F., Plana R., El-Said M., Hashish E. A. Defected ground structures (DGS) and uniplanar compact-photonic band gap (UC-PBG) structures for reducing the size and enhancing the out-of-band rejection of microstrip bandpass ring resonator filters. WSEAS Trans. on Comm., 2008, vol. 7, no. 11, pp. 1112– 1121.
- Yao J., Yuan C., Li H., Wu J., Wang Y., Kudryavtsev A. A., Demidov V. I., Zhou Z. 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission. AIP Advances, 2019, vol. 9, no. 6, article no. 065302. https://doi.org/10.1063/1.5097194
- Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S., Kulikov M. Yu., Ponomarev D. V. Microstrip photonic crystals used for measuring parameters of liquids. Tech. Phys., 2010, vol. 55, no. 8, pp. 1216–1221. https://doi.org/10.1134/S1063784210080220
- Usanov D. A., Skripal A. V., Romanov A. V. Complex permittivity of composites based on dielectric matrices with carbon nanotubes. Tech. Phys., 2011, vol. 56, no. 1, pp. 102–106. https://doi.org/doi.org/10.1134/S1063784211010257
- Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V., Latysheva E. V. Photonic band gap structures and their application for measuring parameters of semiconductor layers. Proc. of the IEEE MTT-S Int. Microw. Symp. (IMS), 2015, pp. 1–4. https://doi.org/10.1109/MWSYM.2015.7166794
- Usanov D. A., Skripal A. V., Ponomarev D. V., Ruzanov O. M., Timofeev I. O., Nikitov S. A. Application of a microwave coaxial Bragg structures for the measurement of parameters of insulators. J. Commun. Technol., 2020, vol. 65, no. 5, pp. 541–548. https://doi.org/10.1134/S1064226920040087
- Usanov D. A., Skripal A. V., Abramov A. V., Bogolubov A. S., Skvortsov V. S., Merdanov M. K. Wideband waveguide matched loads based on photonic crystals with nanometer metal layers. Proc. of 38th Eur. Microw. Conf. (EuMC), 2008, pp. 484–487. https://doi.org/10.1109/EUMC.2008.4751494
- Usanov D. A., Meshchanov V. P., Skripal A. V., Popova N. F., Ponomarev D. V., Merdanov M. K. Centimeter- and millimeter-wavelength matched loads based on microwave photonic crystals. Tech. Phys., 2017, vol. 62, no. 2, pp. 243–247. https://doi.org/10.1134/S106378421702027X
- Li S., Luo J., Anwar S., Li S., Lu W. Hong Hang Z., Lai Y., Hou B., Shen M., Wang C. Broadband perfect absorption of ultrathin conductive films with coherent illumination : Superabsorption of microwave radiation. Phys. Rev. B, 2015, vol. 91, no. 22, article no. 220301(R). https://doi.org/10.1103/PhysRevB.91.220301
- Costa D. S., Nohara E. L., Rezende M. C. Comparative study of experimental and numerical behaviors of microwave absorbers based on ultrathin Al and Cu films. Mater. Chem. Phys., 2017, vol. 194, pp. 322–326. https://doi.org/10.1016/j.matchemphys.2017.03.056
- Ou M., Qiu W., Huang K., Chu S. Ultra-flexible and high-performance electromagnetic wave shielding film based on CNTF/liquid metal composite films. J. Appl. Phys., 2019, vol. 125, no. 13, article no. 134906. https://doi.org/10.1063/1.5089579
- Asmatulu R., Bollavaram P. K., Patlolla V. R., Alarifi I. M., Khan W. S. Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Adv. Compos. Hyb. Mater., 2020, vol. 3, no. 1, pp. 66–83. https://doi.org/10.1007/s42114-020-00135-7
- Bengio E. A., Senic D., Taylor L. W., Headrick R. J., King M., Chen P., Little C. A., Ladbury J., Long C. J., Holloway C. L., Babakhani A., Booth J. C., Orloff N. D., Pasquali M. Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett., 2019, vol. 114, no. 20, article no. 203102. https://doi.org/10.1063/1.5093327
- Parashkov R., Becker E., Riedl T., Johannes H. H., Kowalsky W. Large area electronics using printing methods. Proc. IEEE, 2005, vol. 93, no. 7, pp. 1321–1329. https://doi.org/10.1109/JPROC.2005.850304
- Perelaer J., Smith P., Mager D., Soltman D., Volkman S. K., Subramanian V., Korvink J. G., Schubert U. S. Printed electronics : The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem., 2010, vol. 20, no. 39, pp. 8446–8453. https://doi.org/10.1039/C0JM00264J
- Räisänen A., Ala-Laurinaho J., Asadchy V., Diaz-Rubio A., Khanal S., Semkin V., Tretyakov S., Wang X., Zheng J., Alastalo A., Mäkelä T., Sneck A. Suitability of roll-to-roll reverse offset printing for mass production of millimeter-wave antennas : Progress report. Proc. Antennas Propag. Conf. (LAPC), 2016, pp. 300–304. https://doi.org/10.1109/LAPC.2016.7807528
- Moonen P. F., Yakimets I., Huskens J. Fabrication of transistors on flexible substrates : From mass-printing to high-resolution alternative lithography strategies. Adv. Mater., 2012, vol. 24, no. 41, pp. 5526–5541. https://doi.org/10.1002/adma.201202949
- Khan S., Lorenzelli L., Dahiya R. S. Technologies for printing sensors and electronics over large flexible substrates : A review. IEEE Sens. J., 2015, vol. 15, no. 6, pp. 3164–3185. https://doi.org/10.1109/JSEN.2014.2375203
- Krebs F. C. Fabrication and processing of polymer solar cells : A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells, 2009, vol. 93, no. 4, pp. 394– 412. https://doi.org/10.1016/j.solmat.2008.10.004
- Clemens W., Fix W., Ficker J., Knobloch A., Ullmann A. From polymer transistors toward printed electronics. J. Mater. Res., 2004, vol. 19, no. 7, pp. 1963–1973. https://doi.org/10.1557/JMR.2004.0263
- Khan Y., Thielens A., Muin S., Ting J., Baumbauer C., Arias A. C. A New Frontier of Printed Electronics : Flexible Hybrid Electronics. Adv. Mater., 2019, vol. 32, no. 15, article no. 1905279. https://doi.org/10.1002/adma.201905279
- Li D., Lai W.-Y., Zhang Y.-Z., Huang W. Printable Transparent Conductive Films for Flexible Electronics. Adv. Mater., 2018, vol. 30, no. 10, article no. 1704738. https://doi.org/10.1002/adma.201704738
- Kim D., Moon J. Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem. Solid-State Lett., 2005, vol. 8, no. 11, pp. J30–J33. https://doi.org/10.1149/1.2073670
- Chen L. F., Ong C. K., Neo C. P., Varadan V. V., Varadan V. K. Microwave Electronics : Measurement and Materials Characterization. Chichester, West Sussex, England, John Wiley & Sons Ltd, 2004. 537 p. https://doi.org/10.1002/0470020466
- Lee M.-H. J., Collier R. J. Sheet resistance measurement of thin metallic films and stripes at both 130 GHz and DC. IEEE Trans. Instrum. Meas., 2005, vol. 54, no. 6, pp. 2412–2415. https://doi.org/10.1109/TIM.2005.858536
- Poo Y., Wu R.-X., Fan X., Xiao J. Q. Measurement of ac conductivity of gold nanofilms at microwave frequencies. Rev. Sci. Instrum., 2010, vol. 81, no. 6, article no. 064701. https://doi.org/10.1063/1.3436450
- Wang X.-C., Díaz-Rubio A., Tretyakov S. A. An accurate method for measuring the sheet impedance of thin conductive films at microwave and millimeter-wave frequencies. IEEE Trans. Microw. Theory Techn., 2017, vol. 65, no. 12, pp. 5009–5018. https://doi.org/10.1109/TMTT.2017.2714662
- Krupka J., Strupinski W., Kwietniewski N. Microwave conductivity of very thin graphene and metal films. J. Nanosci. Nanotechnol., 2011, vol. 11, no. 4, pp. 3358– 3362. https://doi.org/10.1166/jnn.2011.3728
- Krupka J., Mazierska J. Contactless measurements of resistivity of semiconductor wafers employing singlepost and split-post dielectric-resonator techniques. IEEE Trans. Instrum. Meas., 2007, vol. 56, no. 5, pp. 1839– 1844. https://doi.org/10.1109/TIM.2007.903647
- Skripal A. V., Ponomarev D. V., Komarov A. A. Tamm resonances in the structure 1-D microwave photonic crystal / conducting nanometer layer. IEEE Trans. Microw. Theory Techn., 2020, Dec., vol. 68. no. 12, pp. 5115–5122. https://doi.org/10.1109/TMTT.2020.3021412
- Gazzano O., Vasconcellos S. M. de, Gauthron K., Symonds C., Bloch J., Voisin P., Bellessa J., Lemaître A., Senellart P. Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys. Rev. Lett., 2011, vol. 107, no. 24, article no. 247402. https:// doi.org/10.1103/PhysRevLett.107.247402
- Zhou H., Yang G., Wang K., Long H., Lu P. Multiple optical Tamm states at a metal-dielectric mirror interface. Opt. Lett., 2010, vol. 35, no. 24, pp. 4112–4114. https://doi.org/10.1364/OL.35.004112
- Chang C. Y., Chen Y. H., Tsai Y. L., Kuo H. C., Chen K. P. Tunability and optimization of coupling efficiency in Tamm plasmon modes. IEEE Journal of Selected Topics in Quantum Electronics, 2015, July– Aug., vol. 21, no. 4, pp. 262–267, article no. 4600206. https://doi.org/10.1109/JSTQE.2014.2375151
- Isić G., Vuković S. Jakšić Z., Belić M. Tamm plasmon modes on semi-infinite metallodielectric superlattices. Sci. Rep., 2017, vol. 7, no. 1, article no. 3746. https://doi.org/10.1038/s41598-017-03497-z
- Cheng H.-C., Kuo C.-Y., Hung Y.-J., Chen K.-P., Jeng S.-C. Liquid-crystal active Tamm-plasmon devices. Phys. Rev. Appl., 2018, vol. 9, no. 6, article no. 064034. https://doi.org/10.1103/PhysRevApplied.9.064034
- Jeng S.-C. Applications of Tamm plasmon-liquid crystal devices. Liquid Crystals, 2020, vol. 47, no. 8, pp. 1–9. https://doi.org/10.1080/02678292.2020.1733114
- Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S. Microwave measurements of thickness of nanometer metal layers and conductivity of semiconductor in structures ‘metal-semiconductor. Proceedings of the XVI International Conference on Microwaves, Radar and Wireless Communications MIKON-2006. 2006, vol. 3, pp. 874–877. https://doi.org/10.1109/MIKON.2006.4345379
- Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S., Kalinina N. V. Measurements of thickness of metal films in sandwich structures by the microwave reflection spectrum. Proc. of 36th Eur. Microw. Conf. (EuMC), 2006, pp. 921–924. https://doi.org/10.1109/EUMC.2006.281071
- Seeger K. Semiconductor Physics : An Introduction. Springer-Verlag, 2004. 538 p. https://doi.org/10.1007/978-3-662-09855-4
- Blakemore J. S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys., 1982, vol. 53, no. 10, pp. R123–R181. https://doi.org/10.1063/1.331665
- Sotoodeh M., Khalid A. H., Rezazadeh A. A. Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys., 2000, vol. 87, no. 6, pp. 2890–2900. https://doi.org/10.1063/1.372274
- Molnar B., Kenedy T. A. Evaluation of S- and Seimplanted GaAs by contactless mobility measurement. Journal of Electrochemical Society : Solid-state Science and Technology, 1978, vol. 125, no. 8, pp. 1318–1320. https://doi.org/10.1149/1.2131670
- Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V., Latysheva E. V. Multiparametric measurements of epitaxial semiconductor structures with the use of one-dimensional microwave photonic crystals. J. Commun. Technol., 2016, vol. 61, no. 1, pp. 42–49. https://doi.org/10.1134/S1064226916010125
- Bo G., Ren L., Xu X., Du Y., Dou S. Recent progress on liquid metals and their applications. Adv. Phys. : X, 2018, vol. 3, no. 1, pp. 411–442. https://doi.org/10.1080/23746149.2018.1446359
- Xie Z., Avila R., Huang Y., Rogers J. A. Flexible and Stretchable Antennas for Biointegrated Electronics. Adv. Mater., 2019, vol. 32, no. 15, article no. 1902767. https://doi.org/10.1002/adma.201902767
- Bakar H. A., Rahim R. A., Soh P. J., Akkaraekthalin P. Liquid-Based Reconfigurable Antenna Technology : Recent Developments, Challenges and Future. Sensors, 2021, vol. 21, no. 3, article no. 827. https://doi.org/10.3390/s21030827
- 1008 reads