Izvestiya of Saratov University.


ISSN 1817-3020 (Print)
ISSN 2542-193X (Online)

For citation:

Skripal A. V., Ponomarev D. V., Komarov A. A., Sharonov V. E. Tamm resonances control in one-dimensional microwave photonic crystal for measuring parameters of heavily doped semiconductor layers. Izvestiya of Saratov University. Physics , 2022, vol. 22, iss. 2, pp. 123-130. DOI: 10.18500/1817-3020-2022-22-2-123-130

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 149)
Article type: 

Tamm resonances control in one-dimensional microwave photonic crystal for measuring parameters of heavily doped semiconductor layers

Skripal Alexander Vladimirovich, Saratov State University
Ponomarev Denis Viktorovich, Saratov State University
Komarov Andrey Aleksandrovich, Saratov State University
Sharonov Vasily Evgenievich, Saratov State University

The possibility has been explored to control the photonic Tamm resonances (TRs) in the one-dimensional microwave photonic crystal (MPC) with the dielectric filling by changing the thickness of the MPC’s outer layer adjacent to the heavily doped layer of the semiconductor GaAs structure. The controlled photonic TRs have been used to measure the conductivity of the heavily doped semiconductor layer. It has been shown that depending on the conductivity of the layer the specific tuning of the TR frequency is necessary in order to achieve a high sensitivity of the TR to the change of the conductivity. The possibility of observing the plasma resonance in the infrared range has additionally allowed to determine the concentration and mobility of free charge carriers in the heavily doped layer of the GaAs structure.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the State task (project No. FSRR-2020-0005).
  1. Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V. One-dimensional Microwave Photonic Crystals : New Applications. CRC Press, Taylor Francis Group, 2019. 154 p. https://doi.org/10.1201/9780429276231
  2. Belyaev B. A., Khodenkov S. A., Shabanov V. F. Investigation of frequency-selective devices based on a microstrip 2D photonic crystal. Doklady Physics [Physics Reports], 2016, vol. 61, no. 4, pp. 155–159. https://doi.org/10.1134/S1028335816040017
  3. Fernandes H. C. C., Medeiros J. L. G., Junior I. M. A., Brito D. B. Photonic crystal at millimeter waves applications. PIERS Online, 2007, vol. 3, no. 5, pp. 689–694. https://doi.org/10.2529/PIERS060901105337
  4. El-Shaarawy H. B., Coccetti F., Plana R., El-Said M., Hashish E. A. Defected ground structures (DGS) and uniplanar compact-photonic band gap (UC-PBG) structures for reducing the size and enhancing the out-of-band rejection of microstrip bandpass ring resonator filters. WSEAS Trans. on Comm., 2008, vol. 7, no. 11, pp. 1112– 1121.
  5. Yao J., Yuan C., Li H., Wu J., Wang Y., Kudryavtsev A. A., Demidov V. I., Zhou Z. 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission. AIP Advances, 2019, vol. 9, no. 6, article no. 065302. https://doi.org/10.1063/1.5097194
  6. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S., Kulikov M. Yu., Ponomarev D. V. Microstrip photonic crystals used for measuring parameters of liquids. Tech. Phys., 2010, vol. 55, no. 8, pp. 1216–1221. https://doi.org/10.1134/S1063784210080220
  7. Usanov D. A., Skripal A. V., Romanov A. V. Complex permittivity of composites based on dielectric matrices with carbon nanotubes. Tech. Phys., 2011, vol. 56, no. 1, pp. 102–106. https://doi.org/doi.org/10.1134/S1063784211010257
  8. Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V., Latysheva E. V. Photonic band gap structures and their application for measuring parameters of semiconductor layers. Proc. of the IEEE MTT-S Int. Microw. Symp. (IMS), 2015, pp. 1–4. https://doi.org/10.1109/MWSYM.2015.7166794
  9. Usanov D. A., Skripal A. V., Ponomarev D. V., Ruzanov O. M., Timofeev I. O., Nikitov S. A. Application of a microwave coaxial Bragg structures for the measurement of parameters of insulators. J. Commun. Technol., 2020, vol. 65, no. 5, pp. 541–548. https://doi.org/10.1134/S1064226920040087
  10. Usanov D. A., Skripal A. V., Abramov A. V., Bogolubov A. S., Skvortsov V. S., Merdanov M. K. Wideband waveguide matched loads based on photonic crystals with nanometer metal layers. Proc. of 38th Eur. Microw. Conf. (EuMC), 2008, pp. 484–487. https://doi.org/10.1109/EUMC.2008.4751494
  11. Usanov D. A., Meshchanov V. P., Skripal A. V., Popova N. F., Ponomarev D. V., Merdanov M. K. Centimeter- and millimeter-wavelength matched loads based on microwave photonic crystals. Tech. Phys., 2017, vol. 62, no. 2, pp. 243–247. https://doi.org/10.1134/S106378421702027X
  12. Li S., Luo J., Anwar S., Li S., Lu W. Hong Hang Z., Lai Y., Hou B., Shen M., Wang C. Broadband perfect absorption of ultrathin conductive films with coherent illumination : Superabsorption of microwave radiation. Phys. Rev. B, 2015, vol. 91, no. 22, article no. 220301(R). https://doi.org/10.1103/PhysRevB.91.220301
  13. Costa D. S., Nohara E. L., Rezende M. C. Comparative study of experimental and numerical behaviors of microwave absorbers based on ultrathin Al and Cu films. Mater. Chem. Phys., 2017, vol. 194, pp. 322–326. https://doi.org/10.1016/j.matchemphys.2017.03.056
  14. Ou M., Qiu W., Huang K., Chu S. Ultra-flexible and high-performance electromagnetic wave shielding film based on CNTF/liquid metal composite films. J. Appl. Phys., 2019, vol. 125, no. 13, article no. 134906. https://doi.org/10.1063/1.5089579
  15. Asmatulu R., Bollavaram P. K., Patlolla V. R., Alarifi I. M., Khan W. S. Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Adv. Compos. Hyb. Mater., 2020, vol. 3, no. 1, pp. 66–83. https://doi.org/10.1007/s42114-020-00135-7
  16. Bengio E. A., Senic D., Taylor L. W., Headrick R. J., King M., Chen P., Little C. A., Ladbury J., Long C. J., Holloway C. L., Babakhani A., Booth J. C., Orloff N. D., Pasquali M. Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett., 2019, vol. 114, no. 20, article no. 203102. https://doi.org/10.1063/1.5093327
  17. Parashkov R., Becker E., Riedl T., Johannes H. H., Kowalsky W. Large area electronics using printing methods. Proc. IEEE, 2005, vol. 93, no. 7, pp. 1321–1329. https://doi.org/10.1109/JPROC.2005.850304
  18. Perelaer J., Smith P., Mager D., Soltman D., Volkman S. K., Subramanian V., Korvink J. G., Schubert U. S. Printed electronics : The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem., 2010, vol. 20, no. 39, pp. 8446–8453. https://doi.org/10.1039/C0JM00264J
  19. Räisänen A., Ala-Laurinaho J., Asadchy V., Diaz-Rubio A., Khanal S., Semkin V., Tretyakov S., Wang X., Zheng J., Alastalo A., Mäkelä T., Sneck A. Suitability of roll-to-roll reverse offset printing for mass production of millimeter-wave antennas : Progress report. Proc. Antennas Propag. Conf. (LAPC), 2016, pp. 300–304. https://doi.org/10.1109/LAPC.2016.7807528
  20. Moonen P. F., Yakimets I., Huskens J. Fabrication of transistors on flexible substrates : From mass-printing to high-resolution alternative lithography strategies. Adv. Mater., 2012, vol. 24, no. 41, pp. 5526–5541. https://doi.org/10.1002/adma.201202949
  21. Khan S., Lorenzelli L., Dahiya R. S. Technologies for printing sensors and electronics over large flexible substrates : A review. IEEE Sens. J., 2015, vol. 15, no. 6, pp. 3164–3185. https://doi.org/10.1109/JSEN.2014.2375203
  22. Krebs F. C. Fabrication and processing of polymer solar cells : A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells, 2009, vol. 93, no. 4, pp. 394– 412. https://doi.org/10.1016/j.solmat.2008.10.004
  23. Clemens W., Fix W., Ficker J., Knobloch A., Ullmann A. From polymer transistors toward printed electronics. J. Mater. Res., 2004, vol. 19, no. 7, pp. 1963–1973. https://doi.org/10.1557/JMR.2004.0263
  24. Khan Y., Thielens A., Muin S., Ting J., Baumbauer C., Arias A. C. A New Frontier of Printed Electronics : Flexible Hybrid Electronics. Adv. Mater., 2019, vol. 32, no. 15, article no. 1905279. https://doi.org/10.1002/adma.201905279
  25. Li D., Lai W.-Y., Zhang Y.-Z., Huang W. Printable Transparent Conductive Films for Flexible Electronics. Adv. Mater., 2018, vol. 30, no. 10, article no. 1704738. https://doi.org/10.1002/adma.201704738
  26. Kim D., Moon J. Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem. Solid-State Lett., 2005, vol. 8, no. 11, pp. J30–J33. https://doi.org/10.1149/1.2073670
  27. Chen L. F., Ong C. K., Neo C. P., Varadan V. V., Varadan V. K. Microwave Electronics : Measurement and Materials Characterization. Chichester, West Sussex, England, John Wiley & Sons Ltd, 2004. 537 p. https://doi.org/10.1002/0470020466
  28. Lee M.-H. J., Collier R. J. Sheet resistance measurement of thin metallic films and stripes at both 130 GHz and DC. IEEE Trans. Instrum. Meas., 2005, vol. 54, no. 6, pp. 2412–2415. https://doi.org/10.1109/TIM.2005.858536
  29. Poo Y., Wu R.-X., Fan X., Xiao J. Q. Measurement of ac conductivity of gold nanofilms at microwave frequencies. Rev. Sci. Instrum., 2010, vol. 81, no. 6, article no. 064701. https://doi.org/10.1063/1.3436450
  30. Wang X.-C., Díaz-Rubio A., Tretyakov S. A. An accurate method for measuring the sheet impedance of thin conductive films at microwave and millimeter-wave frequencies. IEEE Trans. Microw. Theory Techn., 2017, vol. 65, no. 12, pp. 5009–5018. https://doi.org/10.1109/TMTT.2017.2714662
  31. Krupka J., Strupinski W., Kwietniewski N. Microwave conductivity of very thin graphene and metal films. J. Nanosci. Nanotechnol., 2011, vol. 11, no. 4, pp. 3358– 3362. https://doi.org/10.1166/jnn.2011.3728
  32. Krupka J., Mazierska J. Contactless measurements of resistivity of semiconductor wafers employing singlepost and split-post dielectric-resonator techniques. IEEE Trans. Instrum. Meas., 2007, vol. 56, no. 5, pp. 1839– 1844. https://doi.org/10.1109/TIM.2007.903647
  33. Skripal A. V., Ponomarev D. V., Komarov A. A. Tamm resonances in the structure 1-D microwave photonic crystal / conducting nanometer layer. IEEE Trans. Microw. Theory Techn., 2020, Dec., vol. 68. no. 12, pp. 5115–5122. https://doi.org/10.1109/TMTT.2020.3021412
  34. Gazzano O., Vasconcellos S. M. de, Gauthron K., Symonds C., Bloch J., Voisin P., Bellessa J., Lemaître A., Senellart P. Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys. Rev. Lett., 2011, vol. 107, no. 24, article no. 247402. https:// doi.org/10.1103/PhysRevLett.107.247402
  35. Zhou H., Yang G., Wang K., Long H., Lu P. Multiple optical Tamm states at a metal-dielectric mirror interface. Opt. Lett., 2010, vol. 35, no. 24, pp. 4112–4114. https://doi.org/10.1364/OL.35.004112
  36. Chang C. Y., Chen Y. H., Tsai Y. L., Kuo H. C., Chen K. P. Tunability and optimization of coupling efficiency in Tamm plasmon modes. IEEE Journal of Selected Topics in Quantum Electronics, 2015, July– Aug., vol. 21, no. 4, pp. 262–267, article no. 4600206. https://doi.org/10.1109/JSTQE.2014.2375151
  37. Isić G., Vuković S. Jakšić Z., Belić M. Tamm plasmon modes on semi-infinite metallodielectric superlattices. Sci. Rep., 2017, vol. 7, no. 1, article no. 3746. https://doi.org/10.1038/s41598-017-03497-z
  38. Cheng H.-C., Kuo C.-Y., Hung Y.-J., Chen K.-P., Jeng S.-C. Liquid-crystal active Tamm-plasmon devices. Phys. Rev. Appl., 2018, vol. 9, no. 6, article no. 064034. https://doi.org/10.1103/PhysRevApplied.9.064034
  39. Jeng S.-C. Applications of Tamm plasmon-liquid crystal devices. Liquid Crystals, 2020, vol. 47, no. 8, pp. 1–9. https://doi.org/10.1080/02678292.2020.1733114
  40. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S. Microwave measurements of thickness of nanometer metal layers and conductivity of semiconductor in structures ‘metal-semiconductor. Proceedings of the XVI International Conference on Microwaves, Radar and Wireless Communications MIKON-2006. 2006, vol. 3, pp. 874–877. https://doi.org/10.1109/MIKON.2006.4345379
  41. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S., Kalinina N. V. Measurements of thickness of metal films in sandwich structures by the microwave reflection spectrum. Proc. of 36th Eur. Microw. Conf. (EuMC), 2006, pp. 921–924. https://doi.org/10.1109/EUMC.2006.281071
  42. Seeger K. Semiconductor Physics : An Introduction. Springer-Verlag, 2004. 538 p. https://doi.org/10.1007/978-3-662-09855-4
  43. Blakemore J. S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys., 1982, vol. 53, no. 10, pp. R123–R181. https://doi.org/10.1063/1.331665
  44. Sotoodeh M., Khalid A. H., Rezazadeh A. A. Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys., 2000, vol. 87, no. 6, pp. 2890–2900. https://doi.org/10.1063/1.372274
  45. Molnar B., Kenedy T. A. Evaluation of S- and Seimplanted GaAs by contactless mobility measurement. Journal of Electrochemical Society : Solid-state Science and Technology, 1978, vol. 125, no. 8, pp. 1318–1320. https://doi.org/10.1149/1.2131670
  46. Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V., Latysheva E. V. Multiparametric measurements of epitaxial semiconductor structures with the use of one-dimensional microwave photonic crystals. J. Commun. Technol., 2016, vol. 61, no. 1, pp. 42–49. https://doi.org/10.1134/S1064226916010125
  47. Bo G., Ren L., Xu X., Du Y., Dou S. Recent progress on liquid metals and their applications. Adv. Phys. : X, 2018, vol. 3, no. 1, pp. 411–442. https://doi.org/10.1080/23746149.2018.1446359
  48. Xie Z., Avila R., Huang Y., Rogers J. A. Flexible and Stretchable Antennas for Biointegrated Electronics. Adv. Mater., 2019, vol. 32, no. 15, article no. 1902767. https://doi.org/10.1002/adma.201902767
  49. Bakar H. A., Rahim R. A., Soh P. J., Akkaraekthalin P. Liquid-Based Reconfigurable Antenna Technology : Recent Developments, Challenges and Future. Sensors, 2021, vol. 21, no. 3, article no. 827. https://doi.org/10.3390/s21030827